首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
  国内免费   1篇
化学   99篇
晶体学   3篇
力学   3篇
数学   6篇
物理学   32篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   8篇
  2012年   20篇
  2011年   11篇
  2010年   11篇
  2009年   4篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有143条查询结果,搜索用时 86 毫秒
81.
In this paper, we use the Exp-function method to construct the generalized travelling solutions of the master partial differential equation. This equation plays a very important role in mathematical physics and engineering sciences. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The results show the reliability and efficiency of the proposed method.  相似文献   
82.

Abstract  

Reactions of N,N′-diethylthiourea (Detu) with copper(I) cyanide and copper(I) iodide in a 2:1 M ratio in acetonitrile resulted in the formation of [Cu(Detu)Cl]3·(CH3CN)0.5 (1) and [Cu(Detu)3I] (2), respectively. In compound 1 each copper atom is coordinated with one sulfur atom of Detu and with one chloride ion forming a centrosymmetric trinuclear core (Cu3S3Cl3) that exhibits a Cu–Cu separation of 2.7383(5) Ǻ indicating the existence of cuprophilic interactions. Complex 2 crystallizes with two independent molecules per asymmetric unit. Each copper atom is coordinated with three sulfur atoms of Detu and with one iodide ion in a tetrahedral arrangement.  相似文献   
83.
84.
This paper reports the deposition of diamond-like carbon (DLC) films on Si <100>, using a low energy (1.45 kJ) dense plasma focus assisted sputtering of graphite insert at the tip of the tapered anode. The substrates are placed in front of the anode at different axial and angular positions and are exposed to multiple focus shots. The information regarding the DLC structure is acquired by using Raman spectroscopy. The spectra are characterized by two broad bands known as “G-band” and “D-band”. The results point towards the formation of DLC films with both sp3 (diamond like) and sp2 (graphite like) domains. In X-ray diffraction (XRD) pattern, no additional peak is observed except a peak at 2θ = 69° which corresponds to the silicon (Si) substrate. The intensity of Si peak is reduced after treatment indicating the deposition of amorphous carbon. Scanning electron microscopy (SEM) results demonstrate that the smoothness of the film increases with increasing the substrate angular positions with respect to the anode axis. Energy dispersive X-ray (EDX) analysis reveals that the films deposited at lower axial and angular positions are thicker which is complemented by the cross-sectional views of the films.  相似文献   
85.
A 1.8 kJ Mather-type plasma focus (PF) for argon and hydrogen filling is examined. Two anode configurations are used. One is tapered towards the anode face, and the other is cylindrical but the face is cut at different angles. At optimum conditions, the system is found to emit Cu–Kα X-rays of about 1.6±0.1 J/sr in the side-on direction for argon filling, which is about 32% of the total X-ray emission. In 4π-geometry, maximum total X-ray yield and wall plug efficiency found are 26.4±1.3 J and 1.5± 0.1% respectively. The modified geometry may help to use the PF as a radiation source for X-ray diffraction.  相似文献   
86.
87.
Porogens are key components required for the preparation of porous polymer monoliths for application in separation science. Porogens determine the stability, selectivity, and permeability of polymer monoliths. This review summarizes the role of porogens in the preparation of porous polymer monoliths with a focus on clear understanding of effect of porogens on morphological properties, porosity, surface area, mechanical stability, and permeability of monoliths, particularly targeting the field of separation science. This review also includes the use of different types of porogens with the focus on various approaches used to set criteria for their systematic selection, including porogen‐free techniques recently used for synthesis of porous monoliths. It discusses the current state‐of‐the‐art applications of porogens in column preparation as well as where the future developments in this field may be directed.  相似文献   
88.
In the present work, we have fabricated a novel mesoporous TiO2–rGO nanocomposite by a facile one-step solvothermal method using titanic sulfate as the TiO2 source. The as-prepared composites were characterized by transmission electron microscopy, X-ray diffraction; UV–Vis diffuse reflectance spectra, X-ray photoelectron spectroscopy and photoluminence spectra. In situ nucleation and anchoring of TiO2 nanoparticles onto a graphene sheet is favorable fpr forming an intimate interfacial contact, and the chemically bonded TiO2–rGO nanocomposites commendably enhanced their photocatalytic activity in the photodegradation of rhodamine B and phenol. The high photocatalytic activity of the as-synthesized nanocomposites are primarily ascribed to the mesoporous structure, efficient charge transportation and separation with enhanced visible light absorption, which come from the appealing nanoarchitecture, for instance, ultra-dispersed and ultra-small TiO2 nanocrystals along with intimate and absolute interfacial contact between the TiO2 nanocrystals and the graphene sheet.  相似文献   
89.
This study is a one-year monitoring of the inhalable particulate matter (PM10) of Shanghai (from January 2006 to December 2006) to study PM10 pollution. Proton-induced X-ray emission (PIXE) was used to investigate the chemical elements in Shanghai PM10. The study finds seasonal variation in both mass concentration and of chemical elements in PM10. The results of the enrichment factor show that the chemical elements in the inhalable particles could be divided into two categories, soil elements from earth crust and anthropogenic pollution elements. The high enrichment factors suggest that anthropogenic activities were the dominant source for elements such as S, Cu, Cl, Zn, Pb and Br. Strong correlation of K, Ca, Fe and Ti, from factor analysis, indicates these elements coming from earth crust or soil, S, Zn and Pb from industrial pollution and/or traffic and Cl from coal combustion.  相似文献   
90.
Flavonoids are famous for their antioxidant capacity and redox potential. They can combat with cell aging, lipid peroxidation, and cancer. In the present study, Artemisia annua hybrid (Hyb8001r) was subjected to qualitative and quantitative analysis of flavonoids through HPLC. Rol genes transgenics of A. annua were also evaluated for an increase in their flavonoid content along with an increase in antioxidant and cytotoxic potential. This was also correlated with the expression level of flavonoids biosynthetic pathway genes as determined by real-time qPCR. Phenylalanine ammonia-lyase and chalcone synthase genes were found to be significantly more highly expressed in rol B (four to sixfold) and rol C transgenics (3.8–5.5-fold) than the wild-type plant. Flavonoids detected in the wild-type A. annua through HPLC include rutin (0.31 mg/g DW), quercetin (0.01 mg/g DW), isoquercetin (0.107 mg/g DW) and caffeic acid (0.03 mg/g DW). Transgenics of the rol B gene showed up to threefold increase in rutin and caffeic acid, sixfold increase in isoquercetin, and fourfold increase in quercetin. Whereas, in the case of transgenics of rol C gene, threefold increase in rutin and quercetin, 5 fold increase in isoquercetin, and 2.6-fold increase in caffeic acid was followed. Total phenolics and flavonoids content was also found to be increased in rol B (1.5-fold) and rol C (1.4-fold) transgenics as compared to the wild-type plant along with increased free radical scavenging activity. Similarly, the cytotoxic potential of rol gene transgenics against MCF7, HeLA, and HePG2 cancer cell lines was found to be significantly enhanced than the wild-type plant of A. annua. Current findings support the fact that rol genes can alter the secondary metabolism and phytochemical level of the plant. They increased the flavonoids content of A. annua by altering the expression level of flavonoids biosynthetic pathway genes. Increased flavonoid content also enhanced the antioxidant and cytotoxic potential of the plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号