首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33989篇
  免费   6427篇
  国内免费   8516篇
化学   24679篇
晶体学   906篇
力学   2503篇
综合类   1021篇
数学   4451篇
物理学   15372篇
  2024年   68篇
  2023年   512篇
  2022年   1052篇
  2021年   1095篇
  2020年   1272篇
  2019年   1169篇
  2018年   1065篇
  2017年   1363篇
  2016年   1380篇
  2015年   1564篇
  2014年   1971篇
  2013年   2458篇
  2012年   2839篇
  2011年   3041篇
  2010年   2522篇
  2009年   2465篇
  2008年   2874篇
  2007年   2500篇
  2006年   2590篇
  2005年   2221篇
  2004年   1690篇
  2003年   1301篇
  2002年   1289篇
  2001年   1281篇
  2000年   1203篇
  1999年   941篇
  1998年   593篇
  1997年   508篇
  1996年   565篇
  1995年   463篇
  1994年   456篇
  1993年   357篇
  1992年   374篇
  1991年   270篇
  1990年   263篇
  1989年   220篇
  1988年   209篇
  1987年   190篇
  1986年   142篇
  1985年   105篇
  1984年   109篇
  1983年   92篇
  1982年   62篇
  1981年   62篇
  1980年   37篇
  1979年   36篇
  1978年   17篇
  1977年   10篇
  1965年   13篇
  1964年   14篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
971.
均分散针状α—Fe2O3的制备   总被引:2,自引:0,他引:2  
魏雨  邵素霞 《应用化学》1996,13(1):86-88
  相似文献   
972.
In this paper, we calculate the EPR parameters (g factors g parallel, g perpendicular and hyperfine structure constants A parallel, A perpendicular) of rare earth ion Sm3+ in fluoride crystals KY3F10 and LiYF4 from the perturbation formulas of EPR parameters for a 4f5 ion in tetragonal symmetry. In these formulas, the crystal-field J-mixing of the first and second excited-state multiplets 6H(7/2) and 6H(9/2) into the ground state multiplet 6H(5/2), the mixtures among the states with the same J value via spin-orbit coupling interaction and the interactions between the ground Kramers doublet Gammagamma and the same irreducible representation as Gammagamma in other 11 Kramers doublets Gammax within 6HJ (J=5/2, 7/2, 9/2) states via crystal-field and orbital angular momentum (or hyperfine structure) are considered. The calculated results (which are in agreement with the observed values) are discussed.  相似文献   
973.
A new synthetic approach for the formation of ultrathin polymer films with customizable properties was developed. In this approach, the kinematic nature of proton collisions with simple organic molecules condensed on a substrate is exploited to break C-H bonds preferentially. The subsequent recombination of carbon radicals gives a cross-linked polymer thin film, and the selectivity of C-H cleavage preserves the chemical functionalities of the precursor molecules. The nature and validity of the method are exemplified with theoretical results from ab initio molecular dynamics calculations and experimental evidence from a variety of characterization techniques. Its applicability is demonstrated by the synthesis of ultrathin polymer films with precursor molecules such as dotriacontane, docosanoic acid, poly(acrylic acid) oligomer, and polyisoprene. The approach is fundamentally different from conventional chemical synthesis as it involves an unusual mix of physical and chemical processes including charge exchange, projectile penetration, kinematics, collision-induced dissociation, inelastic energy transfer, chain transfer, and chain cross-linking.  相似文献   
974.
The electron paramagnetic resonance (EPR) g factors g(parallel), g(perpendicular) and hyperfine structure parameters A(parallel), A(perpendicular) of the tetragonal Er3+ centers in zircon-type compounds YXO4 (X = As, P, V), ScVO4 and RSiO4 (R = Zr, Hf, Th) are calculated from the perturbation formulas of EPR parameters for 4f11 ion in tetragonal symmetry. In these formulas, the second-order perturbation contributions are included in addition to the first-order perturbation contributions considered in the previous papers. The crystal-field parameters used in the calculations are obtained by analyzing the optical spectral data from the superposition model. Although the superposition model intrinsic parameters An(R0) used in this paper for Er3+ in various zircon-type compounds are not as scattered as those in the previous paper, the calculated results of both the optical spectra and EPR parameters show better agreement than those in the previous paper with the observed values, suggesting that the above calculation method and parameters are more reasonable. The contributions of the second-order perturbation terms to EPR parameters are also discussed.  相似文献   
975.
发现在催化量二茂铁亚胺环钯化合物催化下,芳基氯化汞可在湿和条件下偶联 ,以中等或高的收率生成联芳烃。对于铑盐不能催化偶联的邻位取代苯基氯化汞和 α-基氯化汞,在此体系中亦可发生偶联。以HMPA为溶剂,在x = 0.025(摩尔分 数)化合物1或2催化下与2.0当量氯化锂存在时,得到最好的催化效果。  相似文献   
976.
Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.  相似文献   
977.
Three new metal complexes, Cu(4-Hcba)2(4-cba)2(Py)2 (4-Hcba=4-cyanobenzoic acid) 1 and M[H(4-cba)2]2(Py)2 (M=Ni 2, Co 3), have been prepared by the treatment of 4-Hcba with the respective metal nitrate M(NO3)2 (M=Cu, Ni, Co) in the presence of pyridine (Py). Single-crystal X-ray diffraction analyses (3 is isostructural to 2) show that the obtained complexes are of isolated mononuclear and the metal atoms have distorted octahedral coordination environment. Two different types of intramolecular hydrogen bonds exist: asymmetrical O–HO for 1 and symmetrical OHO for 2 and 3. The crystal packing between the molecular complexes is controlled mainly by T-shaped C–Hπ interactions between pyridine and phenyl rings. Preliminary discussions on IR, UV–VIS and fluorescent spectra have also been carried out.  相似文献   
978.
一维棒状ZnO的制备及电化学嵌锂性能研究   总被引:1,自引:0,他引:1  
目前,商业化锂离子电池一般采用石墨作为负极材料,因其电位与金属锂电极的电位很接近,所以当电池反复循环和过充时,石墨表面易析出金属锂,会因形成枝晶而短路。在温度过高时还容易引起热失控。同时,锂离子电池的容量在很大程度上取决于负极的锂嵌入量,而且石墨材料容量相对较低  相似文献   
979.
Gaseous nitryl azide N4O2 is generated by the heterogeneous reaction of gaseous ClNO2 with freshly prepared AgN3 at −50 °C. The geometric and electronic structure of the molecule in the gas phase has been characterized by in situ photoelectron spectroscopy (PES) and quantum chemical calculations. The experimental first vertical ionization energy of N4O2 is 11.39 eV, corresponding to the ionization of an electron on the highest occupied molecular orbital (HOMO) {4a″(πnb(N4–N5–N6))}−1. An apparent vibrational spacing of 1600 ± 60 cm−1asO1N2O3) on the second band at 12.52 eV (πnb(O1–N2–O3)) further confirms the preference of energetically stable chain structure in the gas phase. To complement the experimental results, the potential-energy surface of this structurally novel transient molecule is discussed. Both calculations and spectroscopic results suggest that the molecule adopts a trans-planar chain structure, and a five-membered ring decomposition pathway is more favorable.  相似文献   
980.
A theoretical framework is presented for analysis of all three "multiline" EPR spectra (MLS) arising from the tetramanganese (Mn(4)) cluster in the S(2) oxidation state of the photosynthetic water oxidizing complex (WOC). Accurate simulations are presented which include anisotropy of the g and (four) (55)Mn hyperfine tensors, chosen according to a database of (55)Mn(III) and (55)Mn(IV) hyperfine tensors obtained previously using unbiased least-squares spectral fitting routines. In view of the large (30%) anisotropy common to Mn(III) hyperfine tensors in all complexes, previous MLS simulations which have assumed isotropic hyperfine constants have required physically unrealistic parameters. A simple model is found which offers good simulations of both the native "19-21-line" MLS and the "26-line" NH(3)-bound form of the MLS. Both a dimer-of-dimers and distorted-trigonal magnetic models are examined to describe the symmetry of the Heisenberg exchange interactions within the Mn(4) cluster and thus define the initial electronic basis states of the cluster. The effect of rhombic symmetry distortions is explicitly considered. Both magnetic models correspond to one of several possible structural models for the Mn(4) cluster proposed independently from Mn EXAFS studies. Simulated MLS were constructed for each of the eight (or seven) doublet states of the Mn(4) cluster in the WOC for the two viable oxidation models (3Mn(III)-1Mn(IV) or 3Mn(IV)-1Mn(III)), and using a wide range of axial Mn hyperfine tensors, with either coaxial or orthogonal tensor alignments. We find accurate simulations using the 3Mn(III)-1Mn(IV) oxidation model. In the dimer-of-dimers coupling model, the spin state conversion between two doublet states |S(12),S(34),S(T)|(7)/(2),4,(1)/(2)> and |(7)/(2),3,(1)/(2)> is found to explain the large (25%) contraction in the hyperfine splitting observed upon conversion from the native MLS to the NH(3)-bound MLS. Stabilization of this excited state as the new ground state is caused by change in the intermanganese exchange coupling, without appreciable change in the intrinsic hyperfine tensors. The lack of good simulations of the Ca(2+)-depleted MLS suggests that Ca(2+)-depletion changes both Mn ligation and intermanganese exchange coupling. The 3Mn(IV)-1Mn(III) oxidation model is disfavored because only approximate simulations could be found for the native MLS and no agreement with the NH(3)-bound MLS was obtained. The scalar part of the hyperfine tensors for both Mn(III) and Mn(IV) ions were found to approximate (+/-5%) the values for the dimanganese(III,IV) catalase enzyme, suggesting similar overall ligand types. However, the large (30%) anisotropic part of the Mn(III) hyperfine interaction is opposite in sign to that found in all tetragonally extended six-coordinate Mn(III) ions (i.e., the usual Jahn-Teller splitting). The distribution of spin density from the high-spin d(4) electron configuration of each Mn(III) ion corresponds to a flattened (oblate) ellipsoid. This electronic distribution is favored in five-coordinate ligand fields having trigonally compressed bipyramidal geometry, but it could also arise, in principle, in strained six-coordinate ligand fields having tetragonally compressed geometry, i.e. [Mn(2)(&mgr;-O)](4+) (reverse Jahn-Teller distortion). The resulting valence electronic configurations are described as e'(2)e"(2) and (d(pi))(3)(d(x)()()2(-)(y)()()2)(1), respectively, in contrast to the (d(pi))(3)(d(z)()()2)(1) configuration common to unstrained six-coordinate tetragonally-extended Mn(III) ions, such as found in the [Mn(2)(&mgr;-O)(2)](3+) core in several synthetic dimers and catalase. Both of the former geometries predict strongly oxidizing Mn(III) ions, thereby suggesting a structural basis for the oxidative reactivity of the Mn(4) cluster in the WOC. The magnetic model needed to explain the MLS is not readily reconciled with the simplest structural and electronic models deduced from EXAFS studies of the WOC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号