首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2477篇
  免费   83篇
  国内免费   14篇
化学   1772篇
晶体学   10篇
力学   40篇
数学   396篇
物理学   356篇
  2022年   14篇
  2021年   26篇
  2020年   55篇
  2019年   37篇
  2018年   31篇
  2017年   21篇
  2016年   74篇
  2015年   60篇
  2014年   64篇
  2013年   99篇
  2012年   95篇
  2011年   100篇
  2010年   90篇
  2009年   76篇
  2008年   100篇
  2007年   105篇
  2006年   119篇
  2005年   104篇
  2004年   91篇
  2003年   80篇
  2002年   94篇
  2001年   46篇
  2000年   54篇
  1999年   52篇
  1998年   46篇
  1997年   54篇
  1996年   55篇
  1995年   54篇
  1994年   50篇
  1993年   38篇
  1992年   40篇
  1991年   38篇
  1990年   27篇
  1989年   42篇
  1988年   22篇
  1987年   15篇
  1986年   25篇
  1985年   28篇
  1984年   29篇
  1983年   32篇
  1981年   20篇
  1980年   24篇
  1979年   30篇
  1978年   26篇
  1977年   24篇
  1976年   24篇
  1975年   17篇
  1974年   13篇
  1973年   18篇
  1971年   17篇
排序方式: 共有2574条查询结果,搜索用时 15 毫秒
91.
The applicability of microwave-induced plasma optical emission spectrometry (MIP-OES) for continuous monitoring of the environmentally hazardous element mercury in flue gases has been studied. Microwave induced plasmas have been sustained using both a TM010 cavity (Beenakker resonator) and a so-called Surfatron. The analytical figures of merit for mercury in argon and helium discharges with both types of low-power micro-wave discharges have been examined. To determine mercury in artificial stack gases non-mixed argon/nitrogen discharges have been tested using a tangential flow torch design which allows to introduce a metal-loaded nitrogen gas flow as external gas and argon as internal gas. The addition of main flue gas components such as water vapour (concentration <6 g/m3), oxygen (<4% v/v) and carbon dioxide (<15% v/v) decrease the mercury line intensities to a considerable extent. Trace gases (CO, HCl, SO2, NO) in concentrations typical to waste incineration processes have been found to have no effect on the mercury and the argon line intensities. The detection limit of mercury in nitrogen is 8 g/m3 using the TM010 MIP and 10 g/m3 using the Surfatron. As such low detection limits are below the emission limit values of present-day environmental legislation MIP-OES is useful for on-line monitoring of mercury.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   
92.
New routes for the preparation of highly active TiO(2)-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, (63)Cu nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO(2) catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO(2) at 120 °C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO(2) at 140 °C, corresponding to an initial reaction rate of 104 mmol g(cat) (-1) s(-1). The activation energy on the Cu/mesoporous TiO(2) catalyst was found to be (144±5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123±3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO(2) support (75±2 kJ mol(-1)).  相似文献   
93.
Postsynthetic metal ion exchange in a benzotriazolate-based MFU-4l(arge) framework leads to a Co(II)-containing framework with open metal sites showing reversible gas-phase oxidation properties.  相似文献   
94.
95.
The polarographic behaviour of hydrolyzed propene-maleic anhydride copolymers in the interval pH 2.0–11.0 has been investigated by differential pulse polarography in aqueous lithium chloride solution at 25°C. In dependence on the pH-value, one, two or three signals, belonging to the acid groups in the copolymer, appear in the polarograms. Three apparent polarographic acid constants have been determined graphically from the changes in the half-wave potential of the separate peaks in correlation with pH.  相似文献   
96.
97.
98.
99.
The installation of large scale colloidal nanoparticle thin films is of great interest in sensor technology or data storage. Often, such devices are operated at elevated temperatures. In the present study, we investigate the effect of heat treatment on the structure of colloidal thin films of polystyrene (PS) nanoparticles in situ by using the combination of grazing incidence small-angle X-ray scattering (GISAXS) and optical ellipsometry. In addition, the samples are investigated with optical microscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). To install large scale coatings on silicon wafers, spin-coating of colloidal pure PS nanoparticles and carboxylated PS nanoparticles is used. Our results indicate that thermal annealing in the vicinity of the glass transition temperature T(g) of pure PS leads to a rapid loss in the ordering of the nanoparticles in spin-coated films. For carboxylated particles, this loss of order is shifted to a higher temperature, which can be useful for applications at elevated temperatures. Our model assumes a softening of the boundaries between the individual colloidal spheres, leading to strong changes in the nanostructure morphology. While the nanostructure changes drastically, the macroscopic morphology remains unaffected by annealing near T(g).  相似文献   
100.
The influence of the surface functionalization of silica particles on their colloidal stability in physiological media is studied and correlated with their uptake in cells. The surface of 55 ± 2 nm diameter silica particles is functionalized by amino acids or amino- or poly(ethylene glycol) (PEG)-terminated alkoxysilanes to adjust the zeta potential from highly negative to positive values in ethanol. A transfer of the particles into water, physiological buffers, and cell culture media reduces the absolute value of the zeta potential and changes the colloidal stability. Particles stabilized by L-arginine, L-lysine, and amino silanes with short alkyl chains are only moderately stable in water and partially in PBS or TRIS buffer, but aggregate in cell culture media. Nonfunctionalized, N-(6-aminohexyl)-3-aminopropyltrimethoxy silane (AHAPS), and PEG-functionalized particles are stable in all media under study. The high colloidal stability of positively charged AHAPS-functionalized particles scales with the ionic strength of the media, indicating a mainly electrostatical stabilization. PEG-functionalized particles show, independently from the ionic strength, no or only minor aggregation due to additional steric stabilization. AHAPS stabilized particles are readily taken up by HeLa cells, likely as the positive zeta potential enhances the association with the negatively charged cell membrane. Positively charged particles stabilized by short alkyl chain aminosilanes adsorb on the cell membrane, but are weakly taken up, since aggregation inhibits their transport. Nonfunctionalized particles are barely taken up and PEG-stabilized particles are not taken up at all into HeLa cells, despite their high colloidal stability. The results indicate that a high colloidal stability of nanoparticles combined with an initial charge-driven adsorption on the cell membrane is essential for efficient cellular uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号