首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7014篇
  免费   216篇
  国内免费   55篇
化学   4365篇
晶体学   52篇
力学   132篇
数学   1333篇
物理学   1403篇
  2023年   31篇
  2022年   144篇
  2021年   180篇
  2020年   132篇
  2019年   193篇
  2018年   205篇
  2017年   177篇
  2016年   256篇
  2015年   219篇
  2014年   217篇
  2013年   482篇
  2012年   432篇
  2011年   545篇
  2010年   377篇
  2009年   313篇
  2008年   442篇
  2007年   414篇
  2006年   374篇
  2005年   358篇
  2004年   312篇
  2003年   248篇
  2002年   204篇
  2001年   93篇
  2000年   86篇
  1999年   102篇
  1998年   79篇
  1997年   56篇
  1996年   87篇
  1995年   51篇
  1994年   47篇
  1993年   56篇
  1992年   44篇
  1991年   31篇
  1990年   15篇
  1989年   18篇
  1988年   13篇
  1987年   13篇
  1986年   16篇
  1985年   16篇
  1984年   17篇
  1983年   23篇
  1982年   15篇
  1981年   18篇
  1980年   8篇
  1979年   9篇
  1978年   15篇
  1977年   14篇
  1976年   10篇
  1975年   14篇
  1974年   9篇
排序方式: 共有7285条查询结果,搜索用时 31 毫秒
131.
Summary The spatial and electronic structures of the complexes [Co(AAm)4(H2O)2](NO3)2 (1), Co(AAm)4Cl2 (2), [Ni(AAm)4(H2O)2](NO3)2 (3) and Ni(AAm)4Cl2 (4), where AAm is acrylamide, and the products of their radical, frontal and post-grafting polymerization have been studied by electronic spectroscopy. The complexes (1), (3) and (4) were found to have pseudooctahedral structures in both the solid and solution phases. A change in the spatial structure of complex (2) was established in going from the crystal (tetragonally distorted octahedral) to solution (tetrahedral). The coordination environment of the metal centre does not change markedly during polymerization of the metal-containing monomers.  相似文献   
132.
trans-Stereospecificity of the amidation of 1-alkoxyisoxazolidine-3,3-dicarboxylic ester (1) has been elucidated. Alkaline hydrolysis of monester 4 yielded the salt 6 which after its ion exchange in the form of S(?) and R-(+)-phenylethylammonium salts was completely separated into the enantiomeric salts (+10 and ?10). Esterification and amidation of these salts afforded antipodes 2 S-( +12) and 2 R-( ?12) containing only a nitrogen asymmetric center. Optical purities of the products were established on the basis of their NMR spectra with shift-reagent. Molecular and crystal structure as well as an absolute configuration of +10 were detected by means of X-ray analysis.  相似文献   
133.
134.
The electrochemical and spectroelectrochemical properties of niobium(V) and the Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) cluster in sulfuric acid and methanesulfonic acid were investigated using cyclic voltammetry, constant potential electrolysis, and spectroelectrochemistry. These chemical systems were suitable to probe the formation of "Nb(3)O(2)" core trinuclear clusters. In 9 M H(2)SO(4) the cluster Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) exhibited a reversible 1-electron reduction peak at E(pc) = -1.30 V vs Hg/Hg(2)SO(4) electrode, as well as a 4-electron irreversible oxidation peak at E(pa) = -0.45 V. Controlled potential reduction at E = -1.40 V produced the green Nb(3.33+) cluster anion Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(6-). In 12 M H(2)SO(4) Nb(V) displayed two reduction peaks at E(pc) = -1.15 V and E(pc) = -1.30 V. It was determined that the first process involves a quasi-reversible 2-electron reduction. After reduction of Nb(V) to Nb(III) the following chemical step involves formation of [Nb(III)](2) dimer, which further reacts with Nb(V) to produce the Nb(3)O(2)(SO(4))(6(H(2)O)(3)(5-) cluster (ECC process). The second reduction peak at E(pc) = -1.30 V corresponds to further 2-electron reduction of Nb(III) to Nb(I). The electrogenerated Nb(I) species also chemically reacts with starting material Nb(V) to produce additional [Nb(III)](2). In 5 M H(2)SO(4), the rate of the second chemical step in the ECC process is relatively slower and reduction of Nb(V) at E = -1.45 V/-1.2 V produces a mixture of Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) and [Nb(III)](2) dimer. [Nb(III)](2) can be selectively oxidized by two 2-electron steps at E = -0.65 V to Nb(V). However, if the oxidation is performed at E = -0.86 V, the product is Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-). A double potential pulse electrolysis waveform was developed to direct the reduction of Nb(V) toward selective formation of the Nb(3)O(2)(SO(4))(6)(H(2)O)(3)(5-) cluster. Proper application of dc-voltage pulses alternating between E(1) = -1.45 V and E(2) = -0.86 V yields only the target trinuclear cluster. Analogous double potential pulse electrolysis of Nb(V) in methanesulfonic acid generates the "Nb(3)O(2)" core cluster Nb(3)O(2)(CH(3)SO(3))(6)(H(2)O)(3)(+).  相似文献   
135.
A series of octahedral ruthenium silyl hydride complexes, cis-(PMe(3))(4)Ru(SiR(3))H (SiR(3) = SiMe(3), 1a; SiMe(2)CH(2)SiMe(3), 1b; SiEt(3), 1c; SiMe(2)H, 1d), has been synthesized by the reaction of hydrosilanes with (PMe(3))(3)Ru(eta(2)-CH(2)PMe(2))H (5), cis-(PMe(3))(4)RuMe(2) (6), or (PMe(3))(4)RuH(2) (9). Reaction with 6 proceeds via an intermediate product, cis-(PMe(3))(4)Ru(SiR(3))Me (SiR(3) = SiMe(3), 7a; SiMe(2)CH(2)SiMe(3), 7b). Alternatively, 1 and 7 have been synthesized via a fast hydrosilane exchange with another cis-(PMe(3))(4)Ru(SiR(3))H or cis-(PMe(3))(4)Ru(SiR(3))Me, which occurs at a rate approaching the NMR time scale. Compounds 1a, 1b, 1d, and 7a adopt octahedral geometries in solution and the solid state with mutually cis silyl and hydride (or silyl and methyl) ligands. The longest Ru-P distance within a complex is always trans to Si, reflecting the strong trans influence of silicon. The aptitude of phosphine dissociation in these complexes has been probed in reactions of 1a, 1c, and 7a with PMe(3)-d(9) and CO. The dissociation is regioselective in the position trans to a silyl ligand (trans effect of Si), and the rate approaches the NMR time scale. A slower secondary process introduces PMe(3)-d(9) and CO in the other octahedral positions, most likely via nondissociative isomerization. The trans effect and trans influence in 7a are so strong that an equilibrium concentration of dissociated phosphine is detectable (approximately 5%) in solution of pure 7a. Compounds 1a-c also react with dihydrogen via regioselective dissociation of phosphine from the site trans to Si, but the final product, fac-(PMe(3))(3)Ru(SiR(3))H(3) (SiR(3) = SiMe(3), 4a; SiMe(2)CH(2)SiMe(3), 4b; SiEt(3), 4c), features hydrides cis to Si. Alternatively, 4a-c have been synthesized by photolysis of (PMe(3))(4)RuH(2) in the presence of a hydrosilane or by exchange of fac-(PMe(3))(3)Ru(SiR(3))H(3) with another HSiR(3). The reverse manifold - HH elimination from 4a and trapping with PMe(3) or PMe(3)-d(9) - is also regioselective (1a-d(9)() is predominantly produced with PMe(3)-d(9) trans to Si), but is very unfavorable. At 70 degrees C, a slower but irreversible SiH elimination also occurs and furnishes (PMe(3))(4)RuH(2). The structure of 4a exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si...HRu interactions are not indicated in the structure or by IR, the HSi distances (2.13-2.23(5) A) suggest some degree of nonclassical SiH bonding in the H(3)SiR(3) fragment. Thermolysis of 1a in C(6)D(6) at 45-55 degrees C leads to an intermolecular CD activation of C(6)D(6). Extensive H/D exchange into the hydride, SiMe(3), and PMe(3) ligands is observed, followed by much slower formation of cis-(PMe(3))(4)Ru(D)(Ph-d(5)). In an even slower intramolecular CH activation process, (PMe(3))(3)Ru(eta(2)-CH(2)PMe(2))H (5) is also produced. The structure of intermediates, mechanisms, and aptitudes for PMe(3) dissociation and addition/elimination of H-H, Si-H, C-Si, and C-H bonds in these systems are discussed with a special emphasis on the trans effect and trans influence of silicon and ramifications for SiC coupling catalysis.  相似文献   
136.
The parallel solution-phase synthesis of a series of building blocks and combinatorial libraries based on natural bispidine scaffold has been accomplished. Key reactions include catalytic hydrogenation of the (-)-cytisine heterocyclic system, followed by alkali-mediated ring cleavage. Using this approach, a series of new bispidine core building blocks for combinatorial synthesis with three points of diversity were effectively synthesized. The libraries from libraries were then obtained in good yields and purities using solution-phase acylation reactions. Obtained combinatorial libraries of 3,4,7-trisubstituted bispidines are potentially useful in the discovery of novel physiologically active compounds.  相似文献   
137.
The dependence of the DC conductivity of diluted colloidal suspensions on the size, zeta potential, and state of motion of the dispersed particles is analyzed both theoretically and numerically. It is shown that the simple formula that represents the conductivity as a sum of products: charge times mobility, taken over all the carriers present in the suspension, is only valid for exceedingly low values of the product kappaa. In contrast, the formulation based on the value of the dipolar coefficient of the suspended particles seems to be valid for all the range of particle sizes. This assertion is only true if the dipolar coefficient is calculated taking into account the electrophoretic motion of the particles. For very low values of the product kappaa, the dipolar coefficient of particles free to move can be several orders of magnitude larger than that of immobile particles.  相似文献   
138.
Nucleophilic addition of the pentafluorophenyl group from (C6F5)3SiF to non-activated imines affording α-C6F5-substituted secondary amines in high yield has been described. The reaction proceeds via simultaneous activation of imines and the silane reagent by means of a proton and chloride ion, respectively.  相似文献   
139.
New electron-donor (D)-electron-acceptor (A) TTF architectures are presented in which two electron-donating 1,3-dithiole moieties are connected by a pi bridge to the weak electron-accepting quinoxaline moiety (D-pi-A compounds 9a and 9b and also two 1,3-dithiole-2-ylidene moieties are connected by a pi bridge to the electron-accepting thieno[3,4-b]quinoxaline bridge (D-pi-A-pi-D compounds 12a-c). There are through-bond intramolecular charge-transfer (ICT) interactions, predicted in theoretical calculations, and confirmed by UV-vis spectroscopy and cyclic voltammetry measurements. This work constitutes the first use of quinoxalines as electron-accepting moieties in D-pi-A compounds.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号