首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   1篇
  国内免费   1篇
化学   52篇
晶体学   3篇
力学   2篇
数学   32篇
物理学   30篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   13篇
  2012年   6篇
  2011年   1篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
排序方式: 共有119条查询结果,搜索用时 78 毫秒
41.
The Wisdom-Holman algorithm is an effective method for numerically solving nearly integrable systems. It takes into account the exact solution of the integrable part. If the nearly integrable system is the solar system, for example, the Wisdom-Holman algorithm uses the solution consisting of Keplerian orbits obtained when the interplanetary interactions are ignored. The effectiveness of the algorithm lies in its ability to take long timesteps. We use the Duffing oscillator and Kepler's problem with forcing to deduce how long those timesteps can be. For nearly Keplerian orbits, the timesteps must be at least six per orbital period even when the orbital eccentricity is zero. High eccentricity of the Keplerian orbits constrains the algorithm and forces it to take shorter timesteps. The analysis is applied to the solar system and other problems.  相似文献   
42.
The structure of axisymmetric laminar jet diffusion flames of ethane, ethylene, acetylene, and propane in quasi-quiescent air has been studied numerically in normal earth gravity (1g) and zero gravity (0g). The time-dependent full Navier–Stokes equations with buoyancy were solved using an implicit, third-order accurate numerical scheme, including a C3-chemistry model and an optically thin-media radiation model for heat losses. Observations of the flames were also made at the NASA Glenn 2.2-Second Drop Tower. For all cases of the fuels and gravity levels investigated, a peak reactivity spot, i.e., reaction kernel, was formed in the flame base, thereby holding a trailing diffusion flame. The location of the reaction kernel with respect to the burner rim depended inversely on the reaction-kernel reactivity or velocity. In the C2 and C3 hydrocarbon flames, the H2–O2 chain reactions were important at the reaction kernel, yet the CH3 + O → CH2O + H reaction, a dominant contributor to the heat-release rate in methane flames studied previously, did not outweigh other exothermic reactions. Instead of the C1-route oxidation pathway in methane flames, the C2 and C3 hydrocarbon fuels dehydrogenated on the fuel side and acetylene was a major hydrocarbon fragment burning at the reaction kernel. The reaction-kernel correlations between the reactivity (the heat-release or oxygen-consumption rate) and the velocity, obtained previously for methane, were developed further for various fuels in more universal forms using variables related to local Damköhler numbers and Peclet numbers.  相似文献   
43.
44.

The distribution coefficient of Cs is estimated using dibenzo-21-crown-7 (DB21C7) and di-benzo-18-crown-6 (DB18C6) in 1-butyl-3-methylimidazolium bis (trifluroromethanesulphonyl) imide (BMIMTF2N) ionic liquid by performing solvent extraction experiments. In addition, molecular dynamics studies on the extraction of cesium (Cs+) ion transfer from the aqueous phase to the BMIMTF2N phase is reported. The experimental findings gave a cesium distribution coefficient of 0.218 and 0.326, which agrees closely with the values of 0.2 and 0.5 obtained from MD simulation for the ionophores DB18C6 and DB21C7, respectively. Thus MD simulation may be helpful in screening the solvents prior to the experiments.

  相似文献   
45.
The effects of fire-extinguishing agents CF3Br and C2HF5 on the structure and extinguishing processes of microgravity cup-burner flames have been studied numerically. Propane and a propane–ethanol–water fuel mixture, prescribed for a Federal Aviation Administration (FAA) aerosol can explosion simulator test, were used as the fuel. The time-dependent, two-dimensional numerical code, which includes a detailed kinetic model (177 species and 2986 reactions), diffusive transport, and a gray-gas radiation model, revealed unique flame structure and predicted the minimum extinguishing concentration of agent when added to the air stream. The peak reactivity spot (i.e., reaction kernel) at the flame base stabilized a trailing flame. The calculated flame temperature along the trailing flame decreased downstream due to radiative cooling, causing local extinction at <1250 K and flame tip opening. As the mole fraction of agent in the coflow (Xa) was increased gradually: (1) the premixed-like reaction kernel weakened (i.e., lower heat release rate) (but nonetheless formed at higher temperature); (2) the flame base stabilized increasingly higher above the burner rim, parallel to the axis, until finally blowoff-type extinguishment occurred; (3) the calculated maximum flame temperature remained at nearly constant (≈1700 K) or mildly increased; and (4) the total heat release of the entire flame decreased (inhibited) for CF3Br but increased (enhanced) for C2HF5. In the lifted flame base with added C2HF5, H2O (formed from hydrocarbon-O2 combustion) was converted further to HF and CF2O through exothermic reactions, thus enhancing the heat-release rate peak. In the trailing flame, “two-zone” flame structure developed: CO2 and CF2O were formed primarily in the inner and outer zones, respectively, while HF was formed in both zones. As a result, the unusual (non-chain branching) reactions and the combustion enhancement (increased total heat release) due to the C2HF5 addition occurred primarily in the trailing diffusion flame.  相似文献   
46.
The newly synthesized Zn(4)O-based MOF (3)(∞)[Zn(4)(μ(4)-O){(Metrz-pba)(2)mPh}(3)]·8 DMF (1·8 DMF) of rare tungsten carbide (acs) topology exhibits a porosity of 43% and remarkably high thermal stability up to 430 °C. Single crystal X-ray structure analyses could be performed using as-synthesized as well as desolvated crystals. Besides the solvothermal synthesis of single crystals a scalable synthesis of microcrystalline material of the MOF is reported. Combined TG-MS and solid state NMR measurements reveal the presence of mobile DMF molecules in the pore system of the framework. Adsorption measurements confirm that the pore structure is fully accessible for nitrogen molecules at 77 K. The adsorptive pore volume of 0.41 cm(3) g(-1) correlates well with the pore volume of 0.43 cm(3) g(-1) estimated from the single crystal structure.  相似文献   
47.
The principal objects studied in this note are infinite, non-affine Coxeter groups W. A well-known result of de la Harpe asserts that such groups have exponential growth. We study the growth type of quotients of W by parabolic subgroups and by a certain class of reflection subgroups. Our main result is that these quotients have exponential growth as well.  相似文献   
48.
WD Kulatilaka  JR Gord  VR Katta  S Roy 《Optics letters》2012,37(15):3051-3053
We discuss photolytic-interference-free, high-repetition-rate imaging of reaction intermediates in flames and plasmas using femtosecond (fs) multiphoton excitation. The high peak power of fs pulses enables efficient nonlinear excitation, while the low energy nearly eliminates interfering single-photon photodissociation processes. We demonstrate proof-of-principle, interference-free, two-photon laser-induced fluorescence line imaging of atomic hydrogen in hydrocarbon flames and discuss the method's implications for certain other atomic and molecular species.  相似文献   
49.
Certain interesting flow features involving multiple transition/relaminarization cycles on the leading edge of a swept wing at low speeds are reported here. The wing geometry tested had a circular nose and a leading edge sweep of 60°. Tests were made at a chord Reynolds number of 1.3 × 106 with model incidence α varied in the range of 3°?18° in discrete steps. Measurements made included wing chord-wise surface pressure distributions and wall shear stress fluctuations (using hot-film gages) within about 10 % of the chord in the leading edge zone. Results at α = 16° and 18° showed that several (often incomplete) transition cycles between laminar-like and turbulent-like flows occurred. These rather surprising results are attributable chiefly to the fact that the Launder acceleration parameter K (appropriately modified for swept wings) can exceed a critical range more than once along the contour of the airfoil in the leading edge region. Each such crossing results in a relaminarization followed by direct retransition to turbulence as K drops to sufficiently low values. It is further shown that the extent of each observed transition zone (of either type) is consistent with earlier data acquired in more detailed studies of direct transition and relaminarization. Swept leading edge boundary layers therefore pose strong challenges to numerical modelling.  相似文献   
50.
Understanding shape control during wet chemical synthesis is important for rational synthesis of nanostructures. Here, we show that two-dimensional metal structures can be obtained from metal salts by reducing the driving force of the reduction reaction that directly translates to the growth of the metal taking place by the two-dimensional nucleation (layer-by-layer growth) mechanism. Experimental evidence is provided for Au, Ag, Pt and Pd systems by choosing appropriate reaction conditions without using any external surfactant. The results are analyzed in terms of the calculations of driving force under different conditions. The results show that surfactants may not be important for producing shape control for the case of 2-D structures while they are required to obtain size control. It is shown that the regime of low driving force is also one where the kinetics of the process is slow and thus a new interpretation of the kinetic control hypothesis is provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号