首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
化学   43篇
晶体学   1篇
数学   1篇
物理学   27篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   12篇
  1999年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
41.
Hydrogenic (two-body) systems are the only atomic systems for which uncertainties in calculations of the energy levels approach the current state of the art in frequency measurement. This article discusses progress in the theory and measurement of transition frequencies in hydrogenic systems. These studies have relevance to the determination of fundamental constants and the testing of physical theories, especially quantum electrodynamics. A set of high accuracy calculable frequency standards could also be realized by using hydrogenic systems.  相似文献   
42.
Various experimental models are used to study brain development and degeneration. They range from whole animal models, which preserve anatomical structures but strongly limit investigations at the cellular level, to dissociated cell culture systems that allow detailed observation of cell phenotypes but lack the highly ordered physiological neuron connection architecture. We describe here a platform comprising independent cell culture chambers separated by an array of "axonal diodes". This array involves asymmetric micro-channels, imposing unidirectional axon connectivity with 97% selectivity. It allows the construction of complex, oriented neuronal networks not feasible with earlier platforms. Different neuronal subtypes could be co-cultivated for weeks, and sequential seeding of different cell populations reproduced physiological network development. To illustrate possible applications, we created and characterized a cortico-striatal oriented network. Functional synaptic connections were established. The activation of striatal differentiation by cortical axons, and the synchronization of neural activity were demonstrated. Each neuronal population and subcompartment could be chemically addressed individually. The directionality of neural pathways being a key feature of the nervous system organization, the axon diode concept brings in a paradigmatic change in neuronal culture platforms, with potential applications for studying neuronal development, synaptic transmission and neurodegenerative disorder such as Alzheimer and Parkinson diseases at the sub-cellular, cellular and network levels.  相似文献   
43.
44.
Three sharp absorption features in the energy range 2.36–2.55 eV have been detected in the transmission spectrum of Co-diffused ZnSe, and a number of luminescence transitions originating from the lowest of these states at 2.361 eV have been observed. Photoluminescence excitation spectra prove that these are high energy excited states of the Co2+Zn impurity, a conclusion confirmed by comparison of measured and predicted luminescence energies. This represents the first identification of luminescence branching from a higher excited state of a transition metal ion in any semiconductor. The sharp, weakly phonon-coupled transitions involve either intra-impurity excitation or transitions from the impurity to localised states split off from a minimum in the conduction band. The implications of these observations for the mechanism of host-impurity energy transfer and for the nature of the excited state wavefunctions are discussed.  相似文献   
45.
The control and modification of surface state is a major challenge in bioanalytical sciences, and in particular in electrokinetic separation methods, due to the importance of electroosmosis. This topic has gained recently a renewed interest, associated with the development of "lab-on-chips" systems that extend the range of materials in which separation channels are fabricated. The surface science community has developed through the years a large toolbox of characterization tools and surface modification protocols, which is not yet fully exploited in the bioanalytical world. In this paper, we try and present an overview of these tools, in order to stimulate new ideas for improved and more controlled surface treatment strategies for separations in capillaries and microchannels. We briefly describe some physical and chemical aspects of electroosmosis (global and spatially resolved), streaming current, and streaming potential. We also review the main strategies for surface coating, and compare the advantages of physisorption, well-organized thin self-assembled monolayers, or conversely thick polymer "brushes". Examples of existing applications to electrophoresis in microchannel are also given.  相似文献   
46.
J L Viovy 《Electrophoresis》1989,10(5-6):429-441
We apply the concepts of tube and reptation to the pulsed electrophoresis of DNA, considering both biased reptation and "breathing" modes (internal modes of the chain). Using suitable preaveraging approximations, analytical expressions are derived which relate displacement in crossed field electrophoresis to molecular weight, field strength, field period, pore size of the gel, and the angle between the field. These expressions provide scaling laws for the change of mobility when one (or more) of the parameters is varied as well as "universal" velocity versus molecular weight versus pulse time curves. These results are quantitatively compared with experiments. At some point which depends on field angle, field strength and chain length, however, we predict a failure of this model due to symmetry breakdown and loss of ergodicity. Qualitatively, this should lead to considerable band spreading and/or splitting of the highest DNA bands into two bands migrating sideways from the diagonal. The case of field inversion is also investigated. It is shown that only breathing modes can explain the strong differences in mobility experienced by chains of different length when opposite fields of equal amplitude are applied: the "trapping" of chains in conformations of low mobility is associated with an antiresonance-like coupling between the external field and the internal modes.  相似文献   
47.
A direct sample fraction deposition method was developed for off-line size-exclusion chromatography (SEC)/matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. By using electrospray, the SEC eluent, together with a suitable matrix solution added coaxially, was directly deposited on the MALDI plate. Owing to the formation of very small droplets in electrospray, solvent evaporation is much faster. The fractionation volume in narrow-bore SEC, which can directly be collected in one MALDI spot, can easily be optimized in the range of a few microlitres. In addition, fairly homogeneous sample spots were obtained. The possible influence of composition variation of the SEC effluent on the analytical results using direct fraction deposition was investigated; no substantial effects were observed. The applicability of the method was demonstrated by characterizing a broad poly(methyl methacrylate) sample. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
48.
A critical review of the existing theoretical models and experimental evidences for sieving mechanisms during separation of macromolecules, paying particular attention to capillary electrophoresis applications is presented. Gel models (Ogston and reptation) have been successfully applied to highly entangled polymer solutions, where fast and efficient separations can occur. In order to account for the DNA/polymers collision-interaction mechanisms during separation in dilute solutions - characterized by a poorer resolution -, approximated analytical models have been developed. An insight in the mechanism regulating the intermediate case of moderately entangled polymer solutions, for low fields and concentrations of small multiples of the overlap concentration c*, is given by the constraint release approach. This model proposes an upper limit of size separation, increasing with matrix concentration and molecular mass. Finally, the coupling between the reptative motion of the analytes and the effect of matrix constraint release very likely plays a fundamental role in the separation mechanism and requires therefore further and deeper investigation, both theoretically and experimentally.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号