首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5845篇
  免费   676篇
  国内免费   747篇
化学   4369篇
晶体学   77篇
力学   263篇
综合类   77篇
数学   991篇
物理学   1491篇
  2024年   10篇
  2023年   111篇
  2022年   170篇
  2021年   204篇
  2020年   250篇
  2019年   261篇
  2018年   218篇
  2017年   223篇
  2016年   269篇
  2015年   308篇
  2014年   357篇
  2013年   536篇
  2012年   524篇
  2011年   514篇
  2010年   403篇
  2009年   377篇
  2008年   442篇
  2007年   359篇
  2006年   334篇
  2005年   234篇
  2004年   180篇
  2003年   125篇
  2002年   142篇
  2001年   79篇
  2000年   71篇
  1999年   67篇
  1998年   49篇
  1997年   44篇
  1996年   42篇
  1995年   17篇
  1994年   29篇
  1993年   27篇
  1992年   14篇
  1991年   13篇
  1990年   16篇
  1989年   18篇
  1988年   19篇
  1987年   13篇
  1986年   9篇
  1985年   17篇
  1984年   16篇
  1983年   13篇
  1982年   14篇
  1981年   10篇
  1980年   17篇
  1979年   10篇
  1978年   18篇
  1977年   14篇
  1976年   13篇
  1975年   10篇
排序方式: 共有7268条查询结果,搜索用时 15 毫秒
101.
A series of 2-(2-oxoalkylidene)-4(1H)-pyrimidinone nucleoside analogs were synthesized by the addition of the lithium enolates of methylketones to 2,5′- and 2,2′-anhydrouridines and to 2,5′-anhydrothymidines. Alternatively, 2-thiouridine was alkylated with bromomethyl ketones to yield 2-(2-oxoalkyl)thio-4(1H)-pyrimidinone ribofuranosides in good yields. These intermediates were subsequently transformed into the title compounds via an Eschenmoser sulfur extrusion reaction. The 2-(2-oxoalkylidene)-4-(1H)-pyrimidinone nucleoside analogs exhibit enol proton signals in their 1H nmr spectra indicative of hydrogen bonding between N-3 and keto oxygen. These structures offer functional groups with potential for Watson-Crick hydrogen bonding.  相似文献   
102.
In recent years the direct electron transfer of redox protein on electrode surface has attracted great attentions1. Different kind of modified electrode and various supporting films for immobilization of proteins had been proposed. But most of them are ba…  相似文献   
103.
Pretreatment of Douglas-fir by steam explosion produces a substrate containing approx 43% lignin. Two strategies were investigated for reducing the effect of this residual lignin on enzymatic hydrolysis of cellulose: mild alkali extraction and protein addition. Extraction with cold 1% NaOH reduced the lignin content by only approx 7%, but cellulose to glucose conversion was enhanced by about 30%. Before alkali extraction, addition of exogenous protein resulted in a significant improvement in cellulose hydrolysis, but this protein effect was substantially diminished after alkali treatment. Lignin appears to reduce cellulose hydrolysis by two distinct mechanisms: by forming a physical barrier that prevents enzyme access and by non-productively binding cellulolytic enzymes. Cold alkali appears to selectively remove a fraction of lignin from steam-exploded Douglas-fir with high affinity for protein. Corresponding data for mixed softwood pretreated by organosolv extraction indicates that the relative importance of the two mechanisms by which residual lignin affects hydrolysis is different according to the pre- and post-treatment method used.  相似文献   
104.
The synthesis of benzylated N2-(4,7,10,13-tetraazatridec-1-yl)-2′-deoxyguanosines 4 was accomplished by a key nucleophilic reaction of the novel unsymmetrical polyamine 2 , with 3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)-2-chloro-2′-deoxyinosine ( 1 ).  相似文献   
105.
Several imidazo[4,5-d]pyridazine nucleosides which are structurally similar to inosine were synthesized. Anhydrous stannic chloride-catalyzed condensation of persilylated imidazo[4,5-d]-pyridazin-4(5H)one (1) and imidazo[4,5-d]pyridazine-4,7(5H,6H)dione ( 16 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose ( 3 ) provided (after sodium methoxide deblocking) 6-β-D-ribo furanosylimidazo[4,5-d]pyridazin-4(5H)one (5) and 3,6-di-(β-D-ribofuranosyI)imidazo[4,5-d]pyridazin-4-one ( 7 ); and 1-(β-D-ribofuranosyl)imidazo[4,5-d]pyridazine-4,7(5H,6H)dione ( 19 ) and 1,5 or 6-di-(β-D-ribofuranosyl)imidazo[4,5-d ]pyridazine-4,7(5H or 6H)dione ( 21 ), respeeitvely. 4,7-Diehloro-1-β-D-ribofuranosylimidazo[4,5-d]pyridazine ( 12 ) and dimethyl 1-β-D-ribofuranosylimidazole-4,5-dicarboxylate ( 26 ), both prepared from stannic chloride-catalyzed ribosylations of the corresponding heterocycles, were converted in several steps to 3-β-D-ribo-furanosy limidazo[4,5-d]pyridazin-4(5H)one ( 14 ) and nucleosidc 19 , respectively. Acid-catalyzed isopropylidenation of mesomeric betaine 7 or nuclcoside 14 provided 3-(2,3-isopropylidene-β-D-ribofuranosyl)imidazo[4,5-d]pyrizin-4(5H)one ( 31 ). 1-β-D-Ribofuranosylimidazo[4,5-d]-pyridazine ( 29 ) was obtained in several steps from nueleoside 12 . The structure of the nucleosides was established by the use of carbon-13 and proton nmr.  相似文献   
106.
3-Dcazacytosine (4-amino-2-pyridone, 3 ), 3-doazauracil (4-hydroxy-2-pyridone, 5 ), 3-deaza-cytidine (4-amino-1-β-D-ribofuranosyl-2-pyridonc, 9 ), and 3-deazauridine (4-hydroxy-1-β-D-ribo-furanosyl-2-pyridone, 11 ) were prepared in high overall yields from 1-methoxy-1-buten-3-yne ( 1 ). Ethyl 3,5,5-triethoxy-3-pentenoate ( 2 ), obtained from acylatioti of 1 with diethyl carbonate and subsequent in situ conjugate addition of ethoxide, was cyelized with ammonia to provide 3 . Diazotization of 3 and subsequent in situ hydroxydediazotization afforded 5 . Nucleoside 9 was obtained from the stannic chloride-catalyzed condensation of bis-trimethylsilylated 3 and 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose ( 7 ), followed by ammonolysis of the blocking groups. Diazotization of 9 and subsequent in situ hydroxydediazotization afforded nucleosidc 11 .  相似文献   
107.
A computational study on the experimentally detected Sc(3)N@C(68) cluster is reported, involving quantum chemical analysis at the B3LYP/6-31G level. Extensive computations were carried out on the pure C(68) cage which does not conform with the isolated pentagon rule (IPR). The two maximally stable C(68) isomers were selected as initial Sc(3)N@C(68) cage structures. Full geometry optimization leads to a confirmation of an earlier assessment of the Sc(3)N@C(68) equilibrium geometry (Nature 2000, 408, 427), namely an eclipsed arrangement of Sc(3)N in the C(68) 6140 frame, where each Sc atom interacts with one pentagon pair. From a variety of theoretical procedures, a D(3h) structure is proposed for the free Sc(3)N molecule. Encapsulated into the C(68) enclosure, this unit is strongly stabilized with respect to rotation within the cage. The complexation energy of Sc(3)N@C(68) cage is found to be in the order of that determined for Sc(3)N@C(80) and exceeding the complexation energy of Sc(3)N@C(78). The cage-core interaction is investigated in terms of electron transfer from the encapsulated trimetallic cluster to the fullerene as well as hybridization between these two subsystems. The stabilization mechanism of Sc(3)N@C(68) is seen to be analogous to that operative in Sc(3)N@C(78). For both cages, C(68) and C(78), inclusion of Sc(3)N induces aromaticity of the cluster as a whole.  相似文献   
108.
The present study contains the analyses performed for pigment samples taken from the Princely church of Curtea de Arges, one of the oldest churches in Romania. The results of our investigations have shown the source of these samples, thus being identified the pigments: natural ultramarine, cinnabar, red earth, and calcium carbonate in the painting from the 14th century, the pigments: lead white, zinc white, and Prussian blue in the repainting from the 19th century and the pigments zinc white, titanium dioxide white, bone white, yellow ochre, red ochre, green earth, artificial ultramarine, and mars red in the interventions carried out in the 20th century. The analyses consisted of light microscopy (LM) and microchemical tests, as well as energy dispersive X-ray (EDX) analysis. This system of analyses allows one to precisely determine the authenticity of certain pigments, thus avoiding the dating errors for different interventions carried out on the original mural painting from the Saint Nicholas Princely church of Curtea de Arges.  相似文献   
109.
The complexes [Rh(Tp)(PPh(3))(2)] (1a) and [Rh(Tp)(P(4-C(6)H(4)F)(3))(2)] (1b) combine with PhC(2)H, 4-NO(2)-C(6)H(4)CHO and Ph(3)SnH to give [Rh(Tp)(H)(C(2)Ph)(PR(3))] (R = Ph, 2a; R = 4-C(6)H(4)F, 2b), [Rh(Tp)(H)(COC(6)H(4)-4-NO(2))(PR(3))] (R = Ph, 3a), and [Rh(Tp)(H)(SnPh(3))(PR(3))] (R = Ph, 4a; R = 4-C(6)H(4)F, 4b) in moderate to good yield. Complexes 1a, 2b, 3a, and 4a have been structurally characterized. In 1a the Tp ligand is bidentate, in 2b, 3a, and 4a it is tridentate. Crystal data for 1a: space group P2(1)/c; a = 11.9664(19), b = 21.355(3), c = 20.685(3) A; beta = 112.576(7) degrees; V = 4880.8(12) A(3); Z = 4; R = 0.0441. Data for 2b: space group P(-)1; a = 10.130(3), b = 12.869(4), c = 17.038(5) A; alpha = 78.641(6), beta = 76.040(5), gamma = 81.210(6) degrees; V = 2100.3(11) A(3); Z = 2; R = 0.0493. Data for 3a: space group P(-)1; a = 10.0073(11), b = 10.5116(12), c = 19.874(2) A; alpha = 83.728(2), beta = 88.759(2), gamma = 65.756(2) degrees; V =1894.2(4) A(3); Z = 2; R = 0.0253. Data for 4a: space group P2(1)/c; a = 15.545(2), b = 18.110(2), c = 17.810(2) A; beta = 95.094(3) degrees; V = 4994.1(10) A(3); Z = 4; R = 0.0256. NMR data ((1)H, (31)P, (103)Rh, (119)Sn) are also reported.  相似文献   
110.
The complete infrared and Raman spectra of 1,1-difluoro-1-silacyclopentane and 1,1-dichloro-1-silacyclopentane have been recorded and analyzed. Furthermore, a number of the vibrational frequencies of the silacyclopentane and silacyclopentane-1, 1-d2 molecules have been reassigned.A normal coordinate calculation for each of these molecules was carried out and this demonstrated the validity of the assignments. Considerable mixing of the modes was found especially where ring vibrations and SiX2 motions were involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号