首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   24篇
  国内免费   5篇
化学   710篇
晶体学   5篇
力学   4篇
数学   95篇
物理学   58篇
  2024年   2篇
  2023年   4篇
  2022年   12篇
  2021年   9篇
  2020年   20篇
  2019年   17篇
  2018年   7篇
  2017年   7篇
  2016年   21篇
  2015年   17篇
  2014年   13篇
  2013年   32篇
  2012年   70篇
  2011年   73篇
  2010年   42篇
  2009年   47篇
  2008年   61篇
  2007年   61篇
  2006年   67篇
  2005年   48篇
  2004年   30篇
  2003年   42篇
  2002年   48篇
  2001年   2篇
  2000年   11篇
  1999年   9篇
  1998年   9篇
  1997年   6篇
  1996年   13篇
  1995年   9篇
  1994年   5篇
  1993年   3篇
  1991年   5篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1930年   2篇
排序方式: 共有872条查询结果,搜索用时 15 毫秒
71.
Novel energy and atom efficiency processes will be keys to develop the sustainable chemical industry of the future. Electrification could play an important role, by allowing to fine-tune energy input and using the ideal redox agent: the electron. Here we demonstrate that a commercially available Milstein ruthenium catalyst (1) can be used to promote the electrochemical oxidation of ethanol to ethyl acetate and acetate, thus demonstrating the four electron oxidation under preparative conditions. Cyclic voltammetry and DFT-calculations are used to devise a possible catalytic cycle based on a thermal chemical step generating the key hydride intermediate. Successful electrification of Milstein-type catalysts opens a pathway to use alcohols as a renewable feedstock for the generation of esters and other key building blocks in organic chemistry, thus contributing to increase energy efficiency in organic redox chemistry.

Electrification of the Milstein catalyst enabled successful molecular electrocatalytic oxidation of ethanol to the four-electron products acetate and ethyl acetate.

In order to achieve the goals of the Sustainable Development Scenario (SDS) of the International Energy Agency, the chemical industry''s emission should decline by around 10% before 2030.1,2 This could be achieved by increasing energy efficiency and the usage of renewable feedstocks. In this respect, molecular electrocatalytic alcohol oxidation could be powerful tool by potentially providing energy and atom efficiency for organic synthesis and energy applications.2–7 Besides the use of aminoxyl-derivatives,8–13 especially the seminal work of Vizza, Bianchini and Grützmacher demonstrated that (transfer)-hydrogenation (TH) catalysts could be activated electrochemically and used in a so-called “organometallic fuel cell”.14 Other TH systems are however mostly limited to two electron oxidations of secondary or benzylic alcohols (Scheme 1A).15–21Open in a separate windowScheme 1(A) Advantages/limitation of electrochemical homogeneous alcohol oxidation using well-defined catalysts. (B) Current efforts to electrify acceptor-less alcohol dehydrogenation (AAD) systems due to their large range of application in thermal catalysis.As an exception, Waymouth et al. recently reported an example of the intramolecular coupling of vicinal benzylic alcohols to the corresponding esters.19,22 In order to extend the range of possible catalysts candidates, the Waymouth group recently also explored the possibility to use an iron-based acceptor-less alcohol dehydrogenation (AAD) catalysts23 for electrocatalytic alcohol oxidation (Scheme 1B).24 The stability under electrochemical conditions in this case is limited to <2 turnovers, but it opens the door to explore a wide range of AAD reactions under electrochemical conditions. Here, we demonstrate that a commercially available Milstein-type AAD catalyst (1)25 is competent for the electrocatalytic alcohol oxidation of ethanol to ethyl acetate and acetate (Scheme 1B).The cyclic voltammogram (CV) of complex 1 (Fig. 1) shows a quasi-reversible diffusive one electron oxidation wave at 0.2 V (all potentials are referenced vs. Fc+/Fc0) in 0.2 M NaPF6 THF/DFB (2 : 1) (DFB = 1,2 difluoro benzene) assigned to the Ru(ii)–Ru(iii) couple (see ESI, section 2.2). The addition of 1 to a 10 mM sodium ethoxide (NaOEt) solution in 200 mM ethanol (EtOH) in 0.1 M NaPF6 (2 : 1 THF/DFB) gives rise to several waves at ca. −0.5, 0.0 and 0.2 V with currents significantly higher than in the absence of catalysts or substrate, indicative of possible catalytic turnover (Fig. 2). Gradual increase of the EtOH concentration from 200 mM to 1 M is accompanied by the disappearance of the first wave at −0.5 V, while a new oxidation wave appears at ca. −0.25 V (Fig. 2, light to dark green traces).Open in a separate windowFig. 1Scan rate dependence of a 1 mM solution of 1 in in 2 : 1 THF/DFB + 0.2 M NaPF6 (from light to dark green: 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 V s−1, 3 mm GC electrode). Inset: evolution of the peak current as a function of the square root of the scan rate.Open in a separate windowFig. 2CVs of 10 mM NaOEt (grey) and of 5 mM 1 + 5 mM NaOEt with increasing concentrations of EtOH (from light to dark green: 200, 400, 600, 800 and 1000 mM) in 2 : 1 THF/DFB + 0.2 M NaPF6. Scan rate 0.1 V s−1, electrode: 3 mm diameter GC electrode.Increasing the base loading gradually from 5 to 20 mM yields a stark increase of current at this new wave at ca. −0.25 V (Fig. 3). Using (TBA)PF6 instead of NaPF6 (used to avoid Hofmann-elimination26) gave similar results (see ESI, section 2.2–2.5 and section 4). In order to assess catalytic turnover under preparative conditions, controlled potential electrolysis (CPE) was performed. CPE experiments were run in pure ethanol (to reduce cell resistance) in the presence of 0.1 M electrolyte of well soluble bases (e.g. NaOEt, LiOH, see ESI section 4). CPE in 0.1 M LiOH with 1 mM 1 at E = 0 V vs. Fc0/+ delivered ca. 15 mM of acetate and 6 mM of ethyl acetate, corresponding to 21 turnovers (per 4 electrons, or 42 turnovers per two electrons) and a faradaic efficiency (FE) of ca. 62% (see ESI section 4.3). In the absence of applied potential (OCP, open circuit potential), no ethyl acetate was formed (see ESI, section 4.4). Likewise, in the absence of catalyst, the passed charge was significantly lower (7C vs. 40C) with no detected formation of ethyl acetate. The low FE could be due to catalyst degradation, as Ru-nanoparticle formation is observed on the electrode post CPE (confirmed by SEM/Elemental mapping, see ESI section 5). Noteworthy, rinse-test CPE and a CPE using a simple Ru-precursor, RuCl3, did not show any ethyl acetate formation and gave similar results to blank experiments, indicating that Ru-nanoparticles are probably not the active catalyst species and that catalyst instability could be responsible for low FE. Further studies are underway to fully understand catalyst speciation under preparative conditions (see ESI section 4.7) the observed catalytic activity of 1 compares well in terms of TON and product selectivity with other molecular homogeneous TH systems, with most systems being limited to the two-electron oxidation of secondary or benzylic alcohols. The Waymouth group reported a NNC ruthenium pincer for the oxidation of isopropanol to acetone with a TON of 4.18 The same group reported on the usage of phenoxy mediators with an iridium pincer complex, reaching a TON of 8 for the same reaction.22 Bonitatibus and co-workers demonstrated the activity of an iridium-based systems with a TON of 32 for the formation of p-benzaldehyde.17 Appel and co-workers reported on a nickel (TON = 3.1)15 and a cobalt triphos systems (TON = 19.9)16 for benzaldehyde formation from benzyl alcohol. To the best of our knowledge, there is only one acceptor-less alcohol dehydrogenation (AAD) catalyst that has been activated electrochemically so-far,24 generating acetone with a TON <2. Only a handful of molecular systems are known to catalyze the electrochemical four electron alcohol reformation to esters, however at significantly higher potentials (1.15 V vs. Fc+/Fc0).2,27,28 Thus, although not designed for electrochemical applications, 1 shows high activity for the challenging 4 electron oxidation of aliphatic substrates.Open in a separate windowFig. 3CV of 5 mM NaOEt (grey), 5 mM of 1 + 1 M EtOH with varying concentrations of base (5, 10, 15, and 20 mM NaOEt, light to dark green) in 2 : 1 THF/DFB + 0.2 M NaPF6. Scan rate 0.1 V s−1, electrode: 3 mm diameter GC electrode.To achieve the transposition from thermal to electrochemical TH, both Grützmacher et al. and Waymouth took advantage of a fast equilibrium between the alcohol substrate and a metal hydride intermediate that could be readily oxidized. The chemistry of ruthenium pincer AAD systems is well studied (Scheme 2)25,29–33 and allows for a putative assignment of the observed CV-behavior. In the presence of excess base and alcohol (Fig. 2 and and3),3), 1 is expected to yield dearomatized complex 2,25 as well as the alkoxide species 3.25,32 We might therefore assign the first wave at −0.5 V to the oxidation of dearomatized complex 2 and the wave around 0 V to the oxidation of the alkoxide complex 3. Indeed, independently synthesized samples of 2 and 3 (in the presence of excess ethanol) give rise to oxidation half-waves at −0.45 V and −0.1 V respectively (see ESI, section 3 and 5.2). This is also in agreement with the observed behavior upon increasing the alcohol concentration with the expected consumption of dearomatized species 2 and concomitant disappearance of the first oxidation wave at −0.5 V. The equilibrium between 2, 3 and 4 has been reported32 and addition of excess ethanol to 2 is thus not only generating 3, but also is expected to deliver 4 (Scheme 2). The appearance of a new anodic wave at ca. −0.25 V (Fig. 2) is thus attributed to the increasing formation of 4 upon addition of larger amounts of EtOH. Complex 4 is relatively unstable in solution,25,32,33 and decomposes in the presence of electrolyte (see ESI section 3.1). DFT calculations were thus used to predict its oxidation potential (see ESI, section 6), which was in reasonable agreement with the observed wave (−0.19 V). The DFT calculations also confirmed the assignment of the other waves related to the dearomatized complex 2 (−0.33 V) and the ethoxide species 3 (−0.1 V). A more detailed mechanistic analysis remains currently hampered by the chemical instability of 4 under the employed reaction conditions, as well as difficulties to isolate 3 in the solid state (limiting kinetic measurements). DFT calculations were thus used to get a better view on possible reaction pathways (Schemes 2, ,33 and ESI section 6.3). The oxidation of 4 at −0.19 V (DFT) yields the radical cation 5, with a calculated pKa in THF of 8.2. In the presence of NaOEt, 5 should thus deprotonate readily to give radical 6, which has an extremely negative oxidation potential of −2.1 V. At the potential it is generated, 6 should thus directly be oxidized to cationic complex 7. This cationic species 7 has a calculated pKa of 22.7 in THF, which is in good agreement with experimental data from the Saouma group on a similar system.26 The high pKa of 7 in THF also validates the need for a strong base (e.g. NaOEt) to reform dearomatized 2. Both Grützmacher and co-workers,14 as well as Waymouth24 have noted that the accelerating effect during electrocatalysis stems from the oxidation of a metal hydride intermediate that is generated by fast chemical steps. In order to verify this hypothesis and to exclude an electrochemical activation of this hydride formation step, transition state barriers were computed (Scheme 3). Taking the dearomatized complex 2 as a reference point, a first step will form the alkoxide species 3 (TS0 = 21.2 kcal mol−1). Oxidizing 2 to 8 slows down the formation of the alkoxide species (TS0ox = 27.5 kcal mol−1), most-likely due to decreased basicity of the ligand. From the alkoxide species 3 dihydride 4 is formed via a linear, charge-separated transition state TS1 (15.7 kcal mol−1). The role of such linear transition states was highlighted recently in the case of ruthenium pincer catalysis for alcohol oxidation.34–37 In principle, it might be envisioned that the oxidation of the metal center could be an additional driving force for this hydride abstraction step. However, after oxidation, the energy span38,39 rises by about 11 kcal mol−1 (TS1ox = 24.7 kcal mol−1). Likewise, a beta-hydride elimination via side-arm opening is not accelerated either by oxidation (TS2ox = 37.5 kcal mol−1, see ESI section 6.4). It thus seems that the generation of 4 is not accelerated by electron transfer steps and relies on a thermally activated chemical step. Importantly, alkoxide solutions were shown to be excellent hydride donors electrochemically, further corroborating that under the employed basic conditions, generation of 4 from 3 should be fast.40 Oxidation of 4 to 5 also doesn''t accelerate thermal intramolecular release of H2 (TS3Box = 37.5 kcal mol−1), which is significantly higher than neutral thermal H2-releasing states (TS3A and TS3B). The experimentally observed acceleration via electron-transfer is thus proposed to follow a classical ECEC mechanism initiated by the oxidation of 4 to 5 (at roughly −0.19 V (DFT)), followed by deprotonation and re-oxidation as described above, finally delivering 2 at the electrode surface. Importantly, at the electrode surface 2 and 3 should be oxidized at the employed potentials, but based on DFT-calculations, these pathways are thought to be non-productive (Scheme 3) and could explain the low catalyst life-time and degradation under electrochemical conditions.Open in a separate windowScheme 2Reactivity of pyridine-based ruthenium complexes via dearomatization/aromatization, as well as DFT-based.Open in a separate windowScheme 3DFT-calculated energy landscape for the neutral (black dotted lines and bars) and cationic surface (blue dotted lines and bars) of ethanol dehydrogenation starting from 2 or its cationic analogue 8.  相似文献   
72.
Singlet oxygen has been characterized spectroscopically as a product of the exposure of suspensions of zeolites containing oxidation catalysts. Spectroscopic and lifetime studies show that a part of the singlet oxygen formed reacts within the zeolite porous structure, while a significant fraction escapes and becomes available for reaction in the bulk media. The liquid phase plays a key role in determining intra- and extracavity dynamics.  相似文献   
73.
In this paper, we study orthogonal polynomials with respect to the bilinear form (f, g) S = V(f) A V(g) T + <u, f (N) g (N)V(f) =(f(c 0), f "(c 0), ..., f (n – 1) 0(c 0), ..., f(c p ), f "(c p ), ..., f (n – 1) p(c p )) u is a regular linear functional on the linear space P of real polynomials, c 0, c 1, ..., c p are distinct real numbers, n 0, n 1, ..., n p are positive integer numbers, N=n 0+n 1+...+n p , and A is a N × N real matrix with all its principal submatrices nonsingular. We establish relations with the theory of interpolation and approximation.  相似文献   
74.
Tunneled metal oxides such as α-Mn8O16 (hollandite) have proven to be compelling candidates for charge-storage materials in high-density batteries. In particular, the tunnels can support one-dimensional chains of K+ ions (which act as structure-stabilizing dopants) and H2O molecules, as these chains are favored by strong H-bonds and electrostatic interactions. In this work, we examine the role of water molecules in enhancing the stability of K+-doped α-Mn8O16 (cryptomelane). The combined experimental and theoretical analyses show that for high enough concentrations of water and tunnel-ions, H2O displaces K+ ions from their natural binding sites. This displacement becomes energetically favorable due to the formation of K2+ dimers, thereby modifying the stoichiometric charge of the system. These findings have potentially significant technological implications for the consideration of cryptomelane as a Li+/Na+ battery electrode. Our work establishes the functional role of water in altering the energetics and structural properties of cryptomelane, an observation that has frequently been overlooked in previous studies.

Water displaces potassium ions and initiates the formation of a homonuclear dimer ion (K2+) in the tunnels of hollandite.  相似文献   
75.
This paper investigates the influence of polymer molecular weight (M(W)) on the chemical modifications of poly(methyl methacrylate), PMMA, and polystyrene, PS, films doped with iodonaphthalene (NapI) and iodophenanthrene (PhenI), following irradiation at 248 nm (KrF excimer laser, 20 ns fwhm and hybrid excimer-dye laser, 500 fs fwhm) and at 308 nm (XeCl excimer laser, 30 ns fwhm). The changes of intensity and position of the polymer Raman bands upon irradiation provide information on cleavage of the polymer bonds. Degradation of PMMA, which is a weak absorbing system at 248 nm, occurs to a higher extent in the case of a larger M(W), giving rise to the creation of unsaturation centers and to degradation products. For highly absorbing PS, no degradation is observed upon irradiation with a KrF laser. Consistently irradiating doped PS at 308 nm, where the absorption is low, induces degradation of the polymer. Results provide direct support for the bulk photothermal model, according to which ejection requires a critical number of broken bonds. In the case of irradiation of doped PMMA with pulses of 248 nm and 500 fs, neither degradation nor dependence with polymer M(W) are observed, indicating that mechanisms involved in the femtosecond laser ablation differ from those operating in the case of nanosecond laser ablation. Participation of multiphoton/avalanche processes is proposed.  相似文献   
76.
A method is described for the enantiomeric quantitation of some chiral compounds via online coupling of reversed-phase liquid chromatography-gas chromatography. The evaluation of some variables affecting the experimentation (i.e., the packing material used in the interface, volume of the transferred fraction, desorption time, initial temperature of the interface, and purge time) makes it possible to optimize the recoveries obtained for some chiral terpenes and lactones using a capillary column of beta-cyclodextrin dissolved in OV-1701. The proposed method allows the enantiomeric analysis of aqueous matrices obtaining relative standard deviations lower than 9% and detection limits ranging from 0.26-0.93 ppm for the investigated compounds.  相似文献   
77.
In this work we extend to superalgebras a result of Skosyrskii [Algebra and Logic, 18 (1) (1979) 49–57, Lemma 2] relating associative and Jordan structures. As an application, we show that the Gelfand-Kirillov dimension of an associative superalgebra coincides with that of its symmetrization, and that local finiteness is equivalent in associative superalgebras and in their symmetrizations. In this situation we obtain that having zero Gelfand-Kirillov dimension is equivalent to being locally finite.Partially supported by MCYT and Fondos FEDER BFM2001-1938-C02-02, and MEC and Fondos FEDER MTM2004-06580-C02-01.Partially supported by a F.P.I. Grant (Ministerio de Ciencia y Tecnología).  相似文献   
78.
The configuration of several keto-cyclolignans related to podophyllotoxin has been reviewed. Under basic catalysis, the configuration at the C-atom in α-position to the lactone carbonyl group in podophyllotoxone is inverted instead of the C-atom in α-position to the ketone group, as it has been reported.  相似文献   
79.
An experiment suitable for first-year students is reported. In this activity, students use a molecular modeling program to compute infrared spectra for a series of molecules. From the data obtained, students generate a group frequency chart and use it to identify unknowns. This provides students with an introduction to vibrational spectroscopy and the use of molecular modeling.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号