首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   6篇
化学   179篇
晶体学   24篇
力学   3篇
数学   23篇
物理学   49篇
  2024年   3篇
  2023年   5篇
  2022年   5篇
  2021年   6篇
  2020年   11篇
  2019年   6篇
  2018年   8篇
  2017年   29篇
  2016年   15篇
  2015年   8篇
  2014年   19篇
  2013年   16篇
  2012年   18篇
  2011年   18篇
  2010年   11篇
  2009年   10篇
  2008年   12篇
  2007年   15篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1972年   1篇
排序方式: 共有278条查询结果,搜索用时 46 毫秒
101.
With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO(2) and CH(4) to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH(2), H(2)PO(3), NO(2), and CH(3). Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO(2) to exceed that of CH(4) by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH(2), H(2)PO(3), NO(2), and COOH functional groups can significantly enhance gas binding, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO(2)/CH(4) selectivity are discussed.  相似文献   
102.
Two simple, sensitive, and cost-effective spectrophotometric methods are described for the determination of metoclopramide hydrochloride (MCP) in pharmaceutical dosage forms. The methods are based on a redox reaction between MCP and KMnO4 in alkaline and acid media. Direct spectrophotometry (method A) involves treating MCP with permanganate in an NaOH medium and measuring a bluish green product at 610 nm. In indirect spectrophotometry (method B), MCP is treated with a fixed concentration of KMnO4 in an H2SO4 medium, and after a specified time, the unreacted KMnO4 is measured at 545 nm. Under optimum assay conditions, Beer’s law is obeyed over the ranges of 0.75–12.0 and 2.5–30.0 g/ml for methods A and B, respectively. Molar absorptivity values are calculated to be 2.33∙104 and 2.66∙104 l/mol cm for methods A and B, respectively, and corresponding Sandell’s sensitivity values are 0.015 and 0.013 g/cm2. Limits of detection (LOD) and quantification (LOQ) are also reported. The applicability of the developed methods was demonstrated by the determination of MCP in tablet and injection forms. The accuracy and reliability of the proposed methods were further ascertained by recovery studies via standard addition technique.  相似文献   
103.
A common method of three-dimensional (3D) cell cultures is embedding single cells in Matrigel. Separated cells in Matrigel migrate or grow to form spheroids but lack cell-to-cell interaction, which causes difficulty or delay in forming mature spheroids. To address this issue, we proposed a 3D aggregated spheroid model (ASM) to create large single spheroids by aggregating cells in Matrigel attached to the surface of 96-pillar plates. Before gelling the Matrigel, we placed the pillar inserts into blank wells where gravity allowed the cells to gather at the curved end. In a drug screening assay, the ASM with Hepatocellular carcinoma (HCC) cell lines showed higher drug resistance compared to both a conventional spheroid model (CSM) and a two-dimensional (2D) cell culture model. With protein expression, cytokine activation, and penetration analysis, the ASM showed higher expression of cancer markers associated with proliferation (p-AKT, p-Erk), tight junction formation (Fibronectin, ZO-1, Occludin), and epithelial cell identity (E-cadherin) in HCC cells. Furthermore, cytokine factors were increased, which were associated with immune cell recruitment/activation (MIF-3α), extracellular matrix regulation (TIMP-2), cancer interaction (IL-8, TGF-β2), and angiogenesis regulation (VEGF-A). Compared to CSM, the ASM also showed limited drug penetration in doxorubicin, which appears in tissues in vivo. Thus, the proposed ASM better recapitulated the tumor microenvironment and can provide for more instructive data during in vitro drug screening assays of tumor cells and improved prediction of efficacious drugs in HCC patients.  相似文献   
104.
Here, we report Cu2S nanocrystals based non-fullerene ternary polymer solar cells by incorporating Cu2S in conjugated polymer (PBDB-T: poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl) benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))]) and small molecule non-fullerene compound (ITIC:3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene). The devices were fabricated in inverted configuration i.e. ITO/ZnO/PBDB-T: Cu2S NCs: ITIC/MoO3/Ag. Effect of concentration of Cu2S nanocrystals on the performance parameters of PBDB-T: ITIC based organic solar cells is studied. An enhancement in the power conversion efficiency from 8.24% to 9.53% is achieved for the optimum concentration of Cu2S nanocrystals in the organic photoactive blend. The cause of improvement in the performance parameters of the device is investigated by means of the light intensity dependent electrochemical impedance spectroscopy and atomic force microscopy. It is found that the devices with Cu2S nanocrystals have less trap-assisted recombination.  相似文献   
105.
106.
Arylpiperazine derivatives referred in this article possessed antitumor activity, which were synthesized and crystallized through the gradual evaporation process. The molecular structures of 2-(4-(2-(4-phenylpiperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione (C27H27N3O2, 1), 2-(4-(2-(4-(4-bromophenyl)piperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione (C27H26BrN3O2, 2) and 2-(4-(2-(4-(4-chlorophenyl)piperazin-1-yl)ethyl)benzyl)isoindoline-1,3-dione (C27H26ClN3O2, 3) were determi-ned and described. π-π interactions were observed in the packing modes of three compounds, and compound 2 and 3 showed halogen interactions between molecules nearby, which were different from compound 1. The dihedral angle values, the bond lengths, bond angles and the parameters demonstrated that involvement of halogen atoms did affect the conformation, configuration and cell parameter of the compounds.  相似文献   
107.
108.
109.
Regions in the cochlea with very few functioning inner hair cells and/or neurons are called "dead regions" (DRs). Previously, we measured the recognition of highpass-filtered nonsense syllables as a function of filter cutoff frequency for hearing-impaired people with and without low-frequency (apical) DRs [J. Acoust. Soc. Am. 122, 542-553 (2007)]. DRs were diagnosed using the TEN(HL) test, and psychophysical tuning curves were used to define the edge frequency (fe) more precisely. Stimuli were amplified differently for each ear, using the "Cambridge formula." The present study was similar, but the speech was presented in speech-shaped noise at a signal-to-noise ratio of 3 dB. For subjects with low-frequency hearing loss but without DRs, scores were high (65-80%) for low cutoff frequencies and worsened with increasing cutoff frequency above about 430 Hz. For subjects with low-frequency DRs, performance was poor (20-40%) for the lowest cutoff frequency, improved with increasing cutoff frequency up to about 0.56fe, and then worsened. As for speech in quiet, these results indicate that people with low-frequency DRs are able to make effective use of frequency components that fall in the range 0.56fe to fe, but that frequency components below 0.56fe have deleterious effects.  相似文献   
110.
The current work explores the adsorptive efficiency of carbon nanospheres (CNSs) derived from oil palm leaves (OPL) that are a source of biowaste. CNSs were synthesized at 400, 600, 800 and 1000 °C, and those obtained at 1000 °C demonstrated maximum removal efficiency of ~91% for malachite green (MG). Physicochemical and microscopic characteristics were analysed by FESEM, TEM, FTIR, Raman, TGA and XPS studies. The presence of surface oxygen sites and the porosity of CNSs synergistically influenced the speed of removal of MG, brilliant green (BG) and Congo red (CR) dyes. With a minimal adsorbent dosage (1 mg) and minimum contact time (10 min), and under different pH conditions, adsorption was efficient and cost-effective (nearly 99, 91 and 88% for BG, MG and CR, respectively). The maximum adsorption capacities of OPL-based CNSs for BG were 500 and 104.16 mg/g for MG and 25.77 mg/g for CR. Adsorption isotherms (Freundlich, Langmuir and Temkin) and kinetics models (pseudo-first-order, pseudo-second-order and Elovich) for the adsorption processes of all three dyes on the CNSs were explored in detail. BG and CR adsorption the Freundlich isotherm best, while MG showed a best fit to the Temkin model. Adsorption kinetics of all three dyes followed a pseudo-second-order model. A reusability study was conducted to evaluate the effectiveness of CNSs in removing the MG dye and showed ~92% efficiency even after several cycles. Highly efficient CNSs with surface oxygen groups and speedy removal of organic dyes within 10 min by CNSs are highlighted in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号