首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
化学   54篇
力学   2篇
数学   2篇
物理学   5篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2015年   6篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2000年   1篇
  1991年   1篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1904年   2篇
  1903年   1篇
  1898年   1篇
排序方式: 共有63条查询结果,搜索用时 31 毫秒
51.
Aiming for better understanding of the large complexity of excited-state processes in carotenoids, we have studied the excitation wavelength dependence of the relaxation dynamics in the carotenoid zeaxanthin. Excitation into the lowest vibrational band of the S2 state at 485 nm, into the 0-3 vibrational band of the S2 state at 400 nm, and into the 2B(u)+ state at 266 nm resulted in different relaxation patterns. While excitation at 485 nm produces the known four-state scheme (S2 --> hot S1 --> S1 --> S0), excess energy excitation led to additional dynamics occurring with a time constant of 2.8 ps (400 nm excitation) and 4.9 ps (266 nm excitation), respectively. This process is ascribed to a conformational relaxation of conformers generated by the excess energy excitation. The zeaxanthin S state was observed regardless of the excitation wavelength, but its population increased after 400 and 266 nm excitation, suggesting that conformers generated by the excess energy excitation are important for directing the population toward the S state. The S2-S1 internal conversion time was shortened from 135 to 70 fs when going from 485 to 400 nm excitation, as a result of competition between the S2-S1 internal conversion from the vibrationally hot S2 state and S2 vibrational relaxation. The S1 lifetime of zeaxanthin was within experimental error the same for all excitation wavelengths, yielding approximately 9 ps. No long-lived species have been observed after excitation by femtosecond pulses regardless of the excitation wavelength, but excitation by nanosecond pulses at 266 nm generated both zeaxanthin triplet state and cation radical.  相似文献   
52.
Excited state dynamics and electron transfer from the Ru(dcbpy)2(NCS)2 (RuN3) sensitizer to semiconductor nanoparticles were studied using time-resolved femtosecond absorption spectroscopy. We found that excitation of the red wing of the absorption spectrum of the sensitizer populates the (3)MLCT state directly, both in solution and attached on semiconductor nanoparticle films. Electron injection is slowed down and becomes gradually less efficient as excitation moves towards red from the absorption maximum at 535 nm. At 675 nm the injection is non-exponential and characterized by 5, 30 and 180 ps time constants. The non-exponential electron injection observed is assigned to injection from a distribution of triplet states with energies below the semiconductor conduction band edge.  相似文献   
53.
54.
Wavefunction stability analysis is commonly applied to converged self-consistent field (SCF) solutions to verify whether the electronic energy is a local minimum with respect to second-order variations in the orbitals. By iterative diagonalisation, the procedure calculates the lowest eigenvalue of the stability matrix or electronic Hessian. However, analytical expressions for the electronic Hessian are unavailable for most advanced post-Hartree–Fock (HF) wave function methods and even some Kohn–Sham (KS) density functionals. To address such cases, we formulate the Hessian-vector product within the iterative diagonalisation procedure as a finite difference of the electronic gradient with respect to orbital perturbations in the direction of the vector. As a model application, following the lowest eigenvalue of the orbital-optimised second-order Møller–Plesset perturbation theory (OOMP2) Hessian during H2 dissociation reveals the surprising stability of the spin-restricted solution at all separations, with a second independent unrestricted solution. We show that a single stable solution can be recovered by using the regularised OOMP2 method (δ-OOMP2), which contains a level shift. Internal and external stability analyses are also performed for SCF solutions of a recently developed range-separated hybrid density functional, ωB97X-V, for which the analytical Hessian is not yet available due to the complexity of its long-range non-local VV10 correlation functional.  相似文献   
55.
56.
57.
Photoinduced electron injection from the sensitizer Ru(dcbpy)2(NCS)2 (RuN3) into SnO2 and TiO2 nanocrystalline films occurs by two distinct channels on the femto- and picosecond time scales. The faster electron injection into the conduction band of the different semiconductors originates from the initially excited singlet state of RuN3, and occurs in competition with intersystem crossing. The rate of singlet electron injection is faster to TiO2 (1/55 fs-1) than to SnO2 (1/145 fs-1), in agreement with higher density of conduction band acceptor states in the former semiconductor. As a result of competition between the ultrafast processes, for TiO2 singlet, whereas for SnO2 triplet electron injection is dominant. Electron injection from the triplet state is nonexponential and can be fitted with time constants ranging from approximately 1 ps (2.5 ps for SnO2) to approximately 50 ps for both semiconductors. The major part of triplet injection is independent of the semiconductor and is most likely controlled by intramolecular dynamics in RuN3. The overall time scale and the yield of electron injection to the two semiconductors are very similar, suggesting that processes other than electron injection are responsible for the difference in efficiencies of solar cells made of these materials.  相似文献   
58.
The relaxation dynamics in the excited states of crystal violet and ethyl violet in alcohol solutions were investigated by picosecond absorption recovery measurements. The experimental results were compared with the model for isomerization in solution proposed by Skinner and Wolynes. The relaxation rate as a function of viscosity displays the turnover behaviour predicted by this model to occur at very low friction.  相似文献   
59.
It is observed that the queuing system M/D/r·k with FIFO has the same waiting time distribution as the queuing system Ek/D/r with FIFO. Using this simple equivalence we can apply numerical methods and tables for M/Dn to solve Ek/D/r.  相似文献   
60.
We report on a study of singlet-singlet annihilation kinetics in a series of Zn(II)-porphyrin-appended dendrimers, where the energy transfer efficiency is significantly improved by extending the molecular chain that connects the light-harvesting chromophores to the dendrimeric backbone with one additional carbon. For the largest dendrimer having 64 Zn(II)-porphyrins, only approximately 10% of the excitation intensity is needed in order to observe the same extent of annihilation in the dendrimers with the additional carbon in the connecting chain as compared to those without. Complete annihilation, until only one chromophore remains excited, now occurs within subunits of seven chromophores, when half of the chromophores are excited. The improvement of the annihilation efficiency in the largest dendrimer with 64 porphyrins can be explained by the presence of a the two-step delayed annihilation process, involving energy hopping from excited to nonexcited chromophores prior to annihilation. In the smallest dendrimer with only four chromophores, delayed annihilation is not present, since the direct annihilation process is more efficient than the two-step delayed annihilation process. As the dendrimer size increases and the chances of originally exciting two neighboring chromophores decreases, the delayed annihilation process becomes more visible. The additional carbon, added to the connecting chain, results in more favorable chromophore distances and orientations for energy hopping. Hence, the improved energy transfer properties makes the Zn(II)-porphyrin-appended dendrimers with the additional carbon promising candidates as light-harvesting antennas for artificial photosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号