首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2366篇
  免费   128篇
  国内免费   12篇
化学   1607篇
晶体学   5篇
力学   60篇
数学   470篇
物理学   364篇
  2023年   24篇
  2022年   56篇
  2021年   79篇
  2020年   58篇
  2019年   59篇
  2018年   54篇
  2017年   46篇
  2016年   113篇
  2015年   98篇
  2014年   97篇
  2013年   146篇
  2012年   191篇
  2011年   227篇
  2010年   98篇
  2009年   103篇
  2008年   162篇
  2007年   152篇
  2006年   156篇
  2005年   128篇
  2004年   98篇
  2003年   83篇
  2002年   74篇
  2001年   28篇
  2000年   18篇
  1999年   20篇
  1998年   13篇
  1997年   9篇
  1996年   13篇
  1995年   2篇
  1994年   13篇
  1993年   17篇
  1992年   12篇
  1991年   7篇
  1990年   9篇
  1989年   9篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有2506条查询结果,搜索用时 15 毫秒
31.
ES-285 x HCl [(2S,3R)-2-amino-3-octadecanol hydrochloride] is a novel investigational anticancer agent, which has shown in vitro and in vivo cytotoxic activity against various tumor cell lines with selectivity for certain solid tumors. The pharmaceutical development of ES-285 x HCl warranted the availability of an assay for the quantification and purity determination of ES-285 x HCl active pharmaceutical ingredient (API) and its pharmaceutical dosage form. A liquid chromatographic method (LC) comprising of derivatisation of ES-285 x HCl with phenylisothiocyanate and UV-detection was developed. The method was found to be linear, precise and accurate. The assay also proved selectivity as determined by analysing ES-285 x HCl in combination with 15 analogues and in combination with hydroxypropyl-beta-cyclodextrin, the excipient used in the lyophilised pharmaceutical dosage form. Stress testing showed that the degradation products were separated from the parent compound, confirming its stability indicating capacity. The method was found robust as determined with design of experiments (DoE), which made it possible to predict system suitability responses in worst case experimental conditions and to define criteria for system suitability testing.  相似文献   
32.
Different transformations of chiral epoxy esters 1 afford two different amino gamma-butyrolactones 2 and 6, and amino gamma-butenolides 8, by different nucleophilic opening-closing processes. [reaction: see text]  相似文献   
33.
Experimental solubilities are reported for benzil dissolved in six binary mixtures containing dibutyl ether with hexane, heptane, octane, cyclohexane, methylcyclohexane, and 2,2,4-trimethylpentane at 25°C. Results of these measurements are compared to the predictions of equations developed previously for solubility in systems of nonspecific interactions. The most successful equation in terms of goodness of fit involved a volume fraction average of the excess Gibbs energies relative to the Flory-Huggins model, and predicted the experimental solubilities in the six systems studied to within an overall average absolute deviation of 3.4% and with a maximum deviation of 6.0%.  相似文献   
34.
We report results from a molecular simulation study of the structure and dynamics of water near single carbohydrate molecules (glucose, trehalose, and sucrose) at 0 and 30 degrees C. The presence of a carbohydrate molecule has a number of significant effects on the microscopic water structure and dynamics. All three carbohydrates disrupt the tetrahedral arrangement of proximal water molecules and restrict their translational and rotational mobility. These destructuring effects and slow dynamics are the result of steric constraints imposed by the carbohydrate molecule and of the ability of a carbohydrate to form stable H bonds with water, respectively. The carbohydrates induce a pronounced decoupling between translational and rotational motions of proximal water molecules.  相似文献   
35.
Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio. The neutral complexes [Pt{S2C=C(C12H6R(2)-2,7)L(2)] [L = PPh(3), R = H (3a), t-Bu (3b), OMe (3c); L = PEt(3), R = H (4a), t-Bu (4b), OMe (4c); L(2) = dbbpy, R = H (5a), t-Bu (5b), OMe (5c) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl)] were similarly prepared from the corresponding precursors [PtCl2L2] and 1a-c in the presence of piperidine. Oxidation of Q(2)2b with [FeCp2]PF6 afforded the mixed Pt(II)-Pt(IV) complex Q2[Pt2{S2C=C[C12H6(t-Bu)(2)-2,7]}4] (Q(2)6, Q = Et4N+, Pr4N+). The protonation of (Pr4N)(2)2b with 2 equiv of triflic acid gave the neutral dithioato complex [Pt2{S2CCH[C12H6(t-Bu)(2)-2,7]}4] (7). The same reaction in 1:1 molar ratio gave the mixed dithiolato/dithioato complex Pr4N[Pt{S2C=C[C12H6(t-Bu)(2)-2,7]}{S2CCH[C12H6(t-Bu)(2)-2,7]}] (Pr(4)N8) while the corresponding DMANH+ salt was obtained by treating 7 with 2 equiv of 1,8-bis(dimethylamino)naphthalene (DMAN). The crystal structures of 3b and 5c.CH2Cl2 have been solved by X-ray crystallography. All the platinum complexes are photoluminescent at 77 K in CH2Cl2 or KBr matrix, except for Q(2)6. Compounds 5a-c and Q8 show room-temperature luminescence in fluid solution. The electronic absorption and emission spectra of the dithiolato complexes reveal charge-transfer absorption and emission energies which are significantly lower than those of analogous platinum complexes with previously described 1,1-ethylenedithiolato ligands and in most cases compare well to those of 1,2-dithiolene complexes.  相似文献   
36.
The octahedral title compound, [Ru(C2H5O)(NO)(NO2)2(C6H16N2)], crystallizes in the rhombohedral space group P31 with an ethoxy ligand axially coordinated trans to the nitro­syl ligand. The RuII ion is equatorially coordinated by a tetramethylethylenediamine group acting as a bidentate ligand, and to two nitro moieties whose planes are tilted with respect to the mean equatorial plane. Each nitro­gen ligand bonded to the metallic centre has a different hybridization state.  相似文献   
37.
In this paper a solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)—venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline—in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL–1 urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.  相似文献   
38.
Fischer carbene complexes 1 underwent a clean ligand dimerization reaction yielding functionalized olefins and trienes 4 in the presence of copper (I) catalysts. If treated with trifluoroacetic acid (TFA), trienes 4c, d, f undergo a cyclization process (Nazarov reaction) which furnishes cyclopentenone derivatives 6c, d, 7c, d and 8 in good yields. Finally, the Fischer aminocarbene 9 efficiently cyclodimerizes to the substituted arene 10 in the presence of CuBr.  相似文献   
39.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号