首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   4篇
化学   23篇
数学   2篇
物理学   6篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
11.
Ti/TiO2 indicator electrodes were prepared by plasma electrolytic oxidation (PEO) method in the tetraborate electrolyte and were used for potentiometric indication of chemical reactions of different types and for analysis of surface and industrial wastewaters on the example of potentiometric determination of alkalinity and chloride. The electrodes formed at current densities of 0.05, 0.1, 0.15 and 0.2 A/cm2 are different in composition, surface morphology and electroanalytical properties. The electrodes formed at a current density of 0.05 A/cm2 exhibit the highest pH-sensitivity and generate the highest analytical signal at the equivalence point in the acid–base and precipitation titrations. The maximum analytical signal at the equivalence point, exceeding in magnitude the analytical signal, obtained by classical Pt electrode in oxidation–reduction and complexometric titrations generates PEO layers formed at a current density of 0.05 A/cm2 and a platinum-modified nanoparticles. The results of the potentiometric titration of the surface and technogenic waters using as indicator Ti/TiO2 electrodes are comparable with the conventionally used glass electrode (to determine alkalinity) and Ag electrode (to the determine chloride) and the results of visual titration. The advantage of the obtained metal oxide systems is the ability to determine two hydrochemical parameters due to their multifunctionality and opportunity to work with a single electrode. In addition, these sensors offer some analytical characteristics such as sensitivity, good reproducibility, high mechanical stability and a simple preparation procedure.  相似文献   
12.
The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.  相似文献   
13.
Low-dimensional ns2-metal halide compounds have received immense attention for applications in solid-state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+, and a stable inorganic luminescent material has yet to be found. Here, the zero-dimensional Rb7Sb3Cl16 phase, comprised of isolated [SbCl6]3− octahedra and edge-sharing [Sb2Cl10]4− dimers, shows room-temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature-dependent PL lifetime rivals that of previous low-dimensional materials with a specific temperature sensitivity above 0.06 K−1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7Bi3−3xSb3xCl16 (x≤1) family, we present the edge-shared [Sb2Cl10]4− dimer as a design principle for Sb-based luminescent materials.  相似文献   
14.
We propose a plasmonic waveguide with semiconductor gain material for optoelectronic integrated circuits. We analyze properties of a finite-thickness metal–semiconductor–metal (F-MSM) waveguide to be utilized as an ultra-compact and fast plasmonic modulator. The InP-based semiconductor core allows electrical control of signal propagation. By pumping the core we can vary the gain level and thus the transmittance of the whole system. The study of the device was made using both analytical approaches for planar two-dimensional case as well as numerical simulations for finite-width waveguides. We analyze the eigenmodes of the F-MSM waveguide, propagation constant, confinement factor, Purcell factor, absorption coefficient, and extinction ratio of the structure. We show that using thin metal layers instead of thick ones we can obtain higher extinction ratio of the device.  相似文献   
15.
Straightforward practical synthetic approaches to 3,4-bis- and 3,4,5-tris(trifluoromethyl)pyrazoles have been developed. The key step of the both syntheses is a transformation of the carboxylic group in a pyrazole core into the trifluoromethyl group by sulfur tetrafluoride. The elaborated synthetic protocols allow gram-scale preparation of the target products. The obtained compounds are comprehensively characterized by means of crystallographic analysis, determination of pK(a) values and fluorescence measurements.  相似文献   
16.
We investigate plasmonic modulators with gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal–semiconductor–metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators. The modulation is performed by changing the gain of the core, that results in different transmittance through the waveguides. A MSM waveguide enables high field localization and therefore high modulation speed. Bulk semiconductor, quantum wells and quantum dots, arranged in either horizontal or vertical layout, are considered as the core of the MSM waveguide. Dependences on the waveguide core size and gain values of various active materials are studied. The designs consider also practical aspects like n- and p-doped layers and barriers in order to obtain close to reality results. The effective propagation constants in the MSM waveguides are calculated numerically. Their changes in the switching process are considered as a figure of merit. We show that a MSM waveguide with electrical current control of the gain incorporates compactness and deep modulation along with having a reasonable level of transmittance.  相似文献   
17.
Chitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile method ideally suited to process biopolymers with minimal impact on their physicochemical properties. However, fabrication parameters and post-processing routine can affect biological activity and, therefore, must be well adjusted. In this study, nanofibrous membranes were prepared using trifluoroacetic acid and dichloromethane and evaluated for physiochemical and antimicrobial properties. The use of such biomaterials as potential antibacterial agents was extensively studied in vitro using Staphylococcus aureus and Escherichia coli as test organisms. The antibacterial assay showed inhibition of bacterial growth and eradication of the planktonic cells of both E. coli and S. aureus in the liquid medium for up to 6 hrs. The quantitative assay showed a significant reduction in bacteria cell viability by nanofibers depending on the method of fabrication. The antibacterial properties of these biomaterials can be attributed to the structural modifications provided by co-solvent formulation and application of post-treatment procedure. Consequently, the proposed antimicrobial surface modification method is a promising technique to prepare biomaterials designed to induce antimicrobial resistance via antiadhesive capability and the biocide-releasing mechanism.  相似文献   
18.
Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 μM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 μM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.  相似文献   
19.
Reactions of acylketenes, generated from diazo diketones, with 2-unsubstituted and 2-monosubstituted 3-aryl-2H-azirines lead to 1:1 or 2:1 adducts, which are derivatives of 5-oxa-1-azabicyclo[4.1.0]hept-3-ene or 5,7-dioxa-1-azabicyclo[4.4.1]undeca-3,8-diene. According to DFT B3LYP/6-31G(d) computations, the formation of (4+2)-monoadducts proceeds via a stepwise non-pericyclic mechanism. Reaction with methanol transforms quantitatively both 1:1 and 2:1 adducts into 1,4-oxazepine derivatives.  相似文献   
20.
New representatives of [1,2,4]triazolo[1,5-a]pyridine-8-carbonitriles were synthesized via the condensation of β-diketones or β-dialdehydes and characterized using MS spectrometry, 1H, 13C and, 19F NMR and IR spectroscopy. Crystal structures of two compounds were established using X-ray analysis and showed that title compounds are prone to the formation of planar molecules. The absence of band responsible for CN stretching vibration in trifluoromethyl-containing compounds was explained using the DFT calculations method, which also showed a significant influence of fluorines introducing on the energy gap between HOMO and LUMO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号