首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   22篇
  国内免费   2篇
化学   258篇
晶体学   1篇
力学   22篇
数学   25篇
物理学   65篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   8篇
  2020年   13篇
  2019年   10篇
  2018年   11篇
  2017年   13篇
  2016年   28篇
  2015年   25篇
  2014年   25篇
  2013年   54篇
  2012年   26篇
  2011年   33篇
  2010年   20篇
  2009年   19篇
  2008年   16篇
  2007年   16篇
  2006年   11篇
  2005年   12篇
  2004年   7篇
  2002年   1篇
  1997年   2篇
  1995年   1篇
  1983年   3篇
  1982年   1篇
排序方式: 共有371条查询结果,搜索用时 281 毫秒
41.
The genotoxic impurities (GIs) are carcinogenic hence its management during synthesis of pharmaceuticals is very important to be detected even in trace level for the safe use of the drugs. The presence of drug substance/drug product DNA-reactive impurities poses a significant problem for drug regulators as well as industry. There are several regulatory guidelines and position papers focused on controlling the amount of impurities within the specified limits. The present compilation gives an account of updated information about GIs and reviews the regulatory aspects for GIs in active pharmaceutical ingredients/drug formulations. A detailed discussion about control strategies in the context of GIs is also described precisely. The analysis of GIs is a challenging and complex aspect of the drug development process. Control and determination of these impurities at ppm or ppb levels are significant challenges for analysts, therefore the approaches for the analysis of GIs have also been discussed.  相似文献   
42.
43.
A method is reported here for calculating unsteady aerodynamics of hovering and flapping airfoil for two-dimensional flow via the following improved methodologies: (a) a correct formulation of the problem using stream function (ψ) and vorticity (ω) as dependent variables; (b) calculating loads and moment by a new method to solve the governing pressure Poisson equation (PPE) in a truncated part of the computational domain on a nonstaggered grid; (c) accurate solution using high accuracy compact difference scheme for the vorticity transport equation (VTE) and (d) accelerating the computations by using a high-order filter after each time step of integration. These have been used to solve Navier–Stokes equation for flow past flapping and hovering NACA 0014 and 0015 airfoils at typical Reynolds numbers relevant to the study of unsteady aerodynamics of micro air vehicle (MAV) and insect/bird flight.  相似文献   
44.
In the present study plate-impact pressureshear experiments have been conducted to study the dynamic shearing resistance of molten metal films at shearing rates of approximately 107 s−1. These molten films are generated by pressure-shear impact of relatively low melt-point metals such as 7075-T6 Al alloy with high hardness and high flow-strength tool-steel plates. By employing high impact speeds and relatively smooth impacting surfaces, normal interfacial pressures ranging from 1–3 GPa and slip speeds of over 100 m/s are generated during the pressure-shear loading. The resulting friction stress (∼100 to 400 MPa) combined with the high slip speeds generate conditions conductive to interfacial temperatures approaching the fully melt temperature regime of the lower melt-point metal (7075-T6 aluminum alloy) comprising the tribo-pair. During pressure-shear loading, laser interferometry is employed to measure normal and transverse motion at the rear surface of the target plate. The normal component of the particle velocity provides the interfacial normal traction while the transverse component provides the shearing resistance of the interface as it passes through melt. In order to extract the critical interfacial parameters, such as the interfacial slip-speed and interfacial temperatures, a Lagrangian finiteelement code is developed. The computational procedure accounts for dynamic effects, heat conduction, contact with friction, and full thermo-mechanical coupling. At temperatures below melt the flyer and target materials are described as an isotropic thermally softening elastic-viscoplastic solid. For material elements with temperatures in excess of the melt point, a purely Newtonian fluid constitutive model is employed. The results of this hybrid experimental-computational study provide insights into the dynamic shearing resistance of molten metal films at high pressures and extremely high shearing rates.  相似文献   
45.
(+)-4-epi-Gabosine A 1 and (−)-gabosine A 2 have been synthesized starting from methyl α,d-glucopyranoside and methyl α,d-mannopyranoside, respectively, by utilizing Pd(0) catalyzed Stille coupling as the key step. On the other hand, syntheses of (+)-4-epi-gabosine E 3 and (−)-gabosine E 4 have been accomplished from methyl α,d-glucopyranoside and from methyl α,d-mannopyranoside, respectively, by utilizing DMAP catalyzed Morita-Baylis-Hillman reaction as the key step. Presence of acetyl group at C-6 position of sugar derived cyclic enone prevented the aromatization of MBH adduct. A plausible mechanism is also described.  相似文献   
46.
The He molecular ion exposed to a strong ultrashort time‐dependent (TD) magnetic field of the order of 109 G is investigated through a quantum fluid dynamics (QFD) and current‐density functional theory (CDFT) based approach using vector exchange‐correlation (XC) potential and energy density functional that depend not only on the electronic charge‐density but also on the current density. The TD‐QFD‐CDFT computations are performed in a parallel internuclear‐axis and magnetic field‐axis configuration at the field‐free equilibrium internuclear separation R = 1.3 au with the field‐strength varying between 0 and 1011 G. The TD behavior of the exchange‐ and correlation energy of the He is analyzed and compared with that obtained using a [B‐TD‐QFD‐density functional theory (DFT)] approach based on the conventional TD‐DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge‐density alone. The CDFT based approach yields TD exchange‐ and correlation energy and TD electronic charge‐density significantly different from that obtained using the conventional TD‐DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT‐based approach is traced to the TD current‐density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He molecular ion is elucidated by treating electronic charge density as an electron‐“fluid” in the terminology of QFD. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
47.
Although the carbon nanotube (CNT) features superior thermal properties in its pristine form, the chemical functionalization often required for many applications of CNT inevitably degrades the structural integrity and affects the transport of energy carriers. In this article, the effect of the side wall functionalization on the phonon energy transmission along the symmetry axis of CNT is studied using the phonon wave packet method. Three different functional groups are studied: methyl (-CH(3)), vinyl (-C(2)H(3)), and carboxyl (-COOH). We find that, near Γ point of the Brillouin zone, acoustic phonons show ideal transmission, while the transmission of the optical phonons is strongly suppressed. A positive correlation between the energy transmission coefficient and the phonon group velocity is observed for both acoustic and optical phonon modes. On comparing the transmission due to functional groups with equivalent point mass defects on CNT, we find that the chemistry of the functional group, rather than its molecular mass, has a dominant role in determining phonon scattering, hence the transmission, at the defect sites.  相似文献   
48.
The tetrazole is an important functionality of the most of energetic materials due to 80% nitrogen content, stability, and high enthalpy of formation. The present structure–property relationship study focuses on the optimized geometries of tetrazole derivatives obtained from density functional theory (DFT) calculations at B3LYP/6-31G* levels. The heat of formation (HOF) of tetrazole derivatives have been calculated by designing the appropriate isodesmic reactions. The increase in nitro groups on azole rings shows the remarkable increase in HOF. Density has been predicted by using CVFF force field. Increase in the nitro group increases the density. Detonation properties of the designed compounds were evaluated by using the Kamlet–Jacobs equation based on predicted densities and HOFs. Designed tetrazole derivatives show detonation velocity (D) over 8 km/s and detonation pressure (P) of about 32 GPa. Thermal stability was evaluated via bond dissociation energies (BDE) of the weakest C–NO2 bond at B3LYP/6-31G* level. Charge on the nitro group has been used to assess the sensitivity correlation. Overall, the study implies that designed compounds of this series are found to be stable and expected to be the novel candidates of high energy materials (HEMs).  相似文献   
49.
The development of an innovative method to access enantiopure 2,4-disubstituted 6-hydroxy-1,6-dihydro-2H-pyridin-3-ones starting from D-glucal via the aza-Achmatowicz transformation has been described. These highly functionalized pyridin-3-ones have been utilized for the synthesis of contiguously substituted pyridines through a rapid and efficient Et(3)N/Ac(2)O promoted cyclo-elimination, aromatization cascade, allowing the facile assembly of important pyridine-based building blocks like 2-substituted 3-acetoxy-4-iodopyridines and enantiopure 2-substituted 3-acetoxy-4-pyridinemethanols possessing benzylic stereogenic centers, whose synthesis otherwise would be tedious. The utilization of commercially available sugars as starting materials, mild reaction conditions, catalytic transfer hydrogen (CTH) of α-furfuryl azide derivatives, transfer of chiral aryl/alkyl methanols from enulosides to pyridin-3-ones and pyridines, high yields, and short reaction times are key features of this method. The utility of the method has been further exemplified by demonstrating the usage of the 2-substituted 3-acetoxy-4-iodopyridine for the construction of biologically significant molecules like 2,7-disubstituted furo[2,3-c]pyridines and 7,7'-disubstituted 2,2'-bifuro[2,3-c]pyridines.  相似文献   
50.
The present paper reports that TL glow curve and kinetic parameter of Eu3+ doped SrY2O4 phosphor irradiated by beta source. Sample was prepared by solid state preparation method. Sample was characterized by XRD analysis and particle size was calculated by Debye–Scherrer formula. The sample was irradiated with Sr-90 beta source giving a dose of 10 Gy and the heating rate used for TL measurements are 6.7 °C/s. The samples display good TL peaks at 106 °C, 225 °C and 382 °C. The corresponding kinetic parameters are calculated. The photoluminescence excitation spectrum at 247 and 364 nm monitored with 400 nm excitation and the corresponding emission peaks at 590, 612 and 624 nm are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号