首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   511篇
  免费   17篇
  国内免费   1篇
化学   439篇
晶体学   3篇
力学   3篇
数学   49篇
物理学   35篇
  2023年   8篇
  2022年   17篇
  2021年   24篇
  2020年   20篇
  2019年   19篇
  2018年   7篇
  2017年   6篇
  2016年   18篇
  2015年   16篇
  2014年   19篇
  2013年   36篇
  2012年   31篇
  2011年   40篇
  2010年   18篇
  2009年   20篇
  2008年   29篇
  2007年   32篇
  2006年   29篇
  2005年   38篇
  2004年   27篇
  2003年   20篇
  2002年   18篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1981年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有529条查询结果,搜索用时 31 毫秒
221.
It is shown that a number of systematic errors must be considered when performing heat measurements by flow microcalorimetry because the nature of the flow technique is such that substantial heat loss can be incurred. The conventional procedure of electrical calibration is found to be an inadequate correction parameter. Equations to account for the effects of thermal disequilibrium are derived from the basic principles incorporated in the Tian equation. The predicted relationships are tested by simple experiments and shown to be correct. The various correction parameters are measured for a wide range of flow rate and heat input conditions. A composite equation is presented which allows for the correction of heat loss while deconvoluting electrical heat from a heat of reaction. The total heat output rate from a flow calorimeter can be calculated for most experimental conditions by reference to this equation and to the tabulated correction values.  相似文献   
222.
Reviews are listed in order of appearance in the sources indicated. In multidisciplinary review journals, only those reviews which fall within the scope of this Journal are included. Sources are listed alphabetically in three categories: regularly issued review journals and series volumes, contributed volumes, and other monographs. Titles are numbered serially, and these numbers are used for reference in the index. Major English-language sources of critical reviews are covered. Encyclopedic treatises, annual surveys such as Specialist Periodical Reports, and compilations of symposia proceedings are omitted. This installment of Recent Reviews covers principally the middle part of the 1997 literature. Previous installment: J. Org. Chem. 1997, 62(21), 7522-30. These Recent Review articles are now also available in a database form on the ACS Organic Division WWW site http://www.organic.emory.edu/acsorg/  相似文献   
223.
The 351.1 nm photoelectron spectrum of imidazolide anion has been measured. The electron affinity (EA) of the imidazolyl radical is determined to be 2.613 +/- 0.006 eV. Vibrational frequencies of 955 +/- 15 and 1365 +/- 20 cm(-1) are observed in the spectrum of the (2)B1 ground state of the imidazolyl radical. The main features in the spectrum are well-reproduced by Franck-Condon simulation based on the optimized geometries and the normal modes obtained at the B3LYP/6-311++G(d,p) level of density functional theory. The two vibrational frequencies are assigned to totally symmetric modes with C-C and N-C stretching motions. Overtone peaks of an in-plane nontotally symmetric mode are observed in the spectrum and attributed to Fermi resonance. Also observed is the photoelectron spectrum of the anion formed by deprotonation of imidazole at the C5 position. The EA of the corresponding radical, 5-imidazolyl, is 1.992 +/- 0.010 eV. The gas phase acidity of imidazole has been determined using a flowing afterglow-selected ion tube; delta(acid)G298 = 342.6 +/- 0.4 and delta(acid)H298 = 349.7 +/- 0.5 kcal mol(-1). From the EA of imidazolyl radical and gas phase acidity of imidazole, the bond dissociation energy for the N-H bond in imidazole is determined to be 95.1 +/- 0.5 kcal mol(-1). These thermodynamic parameters for imidazole and imidazolyl radical are compared with those for pyrrole and pyrrolyl radical, and the effects of the additional N atom in the five-membered ring are discussed.  相似文献   
224.
Bond dissociation enthalpies (BDE) of hydroxylamines containing alkyl, aryl, vinyl, and carbonyl substituents at the nitrogen atom have been determined by using the EPR radical equilibration technique in order to study the effect of the substituents on the O-H bond strength of these compounds. It has been found that substitution of an alkyl group directly bonded to the nitrogen atom with vinyl or aryl groups has a small effect, while substitution with acyl groups induces a large increase of the O-H BDE value. Thus, dialkyl hydroxylamines have O-H bond strengths of only ca. 70 kcal/mol, while acylhydroxylamines and N-hydroxyphthalimide (NHPI), containing two acyl substituents at nitrogen, are characterized by BDE values of ca. 80 and 88 kcal/mol, respectively. Since the phthalimide N-oxyl radical (PINO) has been recently proposed as an efficient oxidation catalyst of hydrocarbons or other substrates, the large BDE value found for the parent hydroxylamine (NHPI) justifies this proposal. Kinetic studies, carried out in order to better understand the mechanism of the NHPI-catalyzed aerobic oxidation of cumene, are consistent with a simple kinetic model where the rate-determining step is the hydrogen atom abstraction from the hydroxylamine by cumylperoxyl radicals.  相似文献   
225.
The gas-phase reactions of protonated hydrazine (hydrazinium) with organic compounds were studied in a selected ion flow tube-chemical ionization mass spectrometer (SIFT-CIMS) at 0.5 Torr pressure and approximately 300 K and with hybrid density functional calculations. Carbonyl and other polar organic compounds react to form adducts, e.g., N(2)H(5)(+)(CH(3)CH(2)CHO). In the presence of neutral hydrazine, aldehyde adducts react further to form protonated hydrazones, e.g., CH(3)CH(2)CH[double bond]HNNH(2)(+) from propanal. Using deuterated hydrazine (N(2)D(4)) and butanal, we demonstrate that the gas-phase ion chemistry of hydrazinium and carbonyls operates by the same mechanisms postulated for the reactions in solution. Calculations provide insight into specific steps and transition states in the reaction mechanism and aid in understanding the likely reaction process upon chemical or translational activation. For most carbonyls, rate coefficients for adduct formation approach the predicted maximum collisional rate coefficients, k approximately 10(-9) cm(3) molecule(-1) s(-1). Formaldehyde is an exception (k approximately 2 x 10(-11) cm(3) molecule(-1) s(-1)) due to the shorter lifetime of its collision complex. Following adduct formation, the process of hydrazone formation may be rate limiting at thermal energies. The combination of fast reaction rates and unique chemistry shows that protonated hydrazine can serve as a useful chemical-ionization reagent for quantifying atmospheric carbonyl compounds via CIMS. Mechanistic studies provide information that will aid in optimizing reaction conditions for this application.  相似文献   
226.
This research represents initial functionalization of a Gd3N@C80 metallic nitride fullerene (MNF). Results demonstrate that a bisadduct can be prepared in an isolable yield for this MRI precursor MNF. This Gd3N@C80 bisadduct is synthesized and purified, and preliminary characterization is reported. This is a significant finding as, to date, only MNF monoadducts have been purified.  相似文献   
227.
Different contents of bonded cellulose were dispersed in a matrix of castor-oil-based polyurethane to produce composites with high susceptibility to fungal attack. We chose to bond the cellulose filler with free diisocyanate, to increase the crosslinking density. Measurements indicated physical and chemical interactions between the polyurethane matrix and cellulose filler. The cellulose network significantly enhanced the interfacial adhesion and thus improved the thermal stability and Young’s modulus of the composites. The influences of the amount of cellulose on the surface chemical structure, surface morphology, and mechanical properties after fungal attack were also investigated. The tensile strength and elongation at break of these composites substantially decreased after exposure to fungus. These composites with high content of renewable raw materials present an optimal balance of physical properties and biodegradability, with potential applications as ecofriendly biomaterials.  相似文献   
228.
We describe the one-pot synthesis of a large panel of nucleic bases and related compounds from formamide in the presence of iron sulfur and iron-copper sulfur minerals as catalysts. The major products observed are purine, 1H-pyrimidinone, isocytosine, adenine, 2-aminopurine, carbodiimide, urea, and oxalic acid. Isocytosine and 2-aminopurine may recognize natural nucleobases by Watson-Crick and reverse Watson-Crick interactions, thus suggesting novel scenarios for the origin of primordial nucleic acids. Since the major problem in the origin of informational polymers is the instability of their precursors, we also investigate the effects of iron sulfur and iron-copper sulfur minerals on the stability of ribooligonucleotides in formamide and in water. All of the iron sulfur and iron-copper sulfur minerals stimulated degradation of RNA. The relevance of these findings with respect to the origin of informational polymers is discussed.  相似文献   
229.
Although alcohols are well-known to be protein denaturants when present at high concentrations, their effect on proteins at low concentrations is much less well characterized. In this paper, we present a study of the effects of alcohols on protein stability using Yfh1, the yeast ortholog of the human protein frataxin. Exploiting the unusual property of this protein of undergoing cold denaturation around 0 degrees C without any ad hoc destabilization, we determined the stability curve on the basis of both high and low temperature unfolding in the presence of three commonly used alcohols: trifluoroethanol, ethanol, and methanol. In all cases, we observed an extended temperature range of protein stability as determined by a modest increase of the high temperature of unfolding but an appreciable decrease in the low temperature of unfolding. On the basis of simple thermodynamic considerations, we are able to interpret the literature on the effects of alcohols on proteins and to generalize our findings. We suggest that alcohols, at low concentration and physiological pH, stabilize proteins by greatly widening the range of temperatures over which the protein is stable. Our results also clarify the molecular mechanism of the interaction and validate the current theoretical interpretation of the mechanism of cold denaturation.  相似文献   
230.
A dinuclear ruthenium(II) complex groove binds to DNA and this interaction results in distinctive color changes that are dependent on both DNA sequence and structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号