首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1009篇
  免费   35篇
  国内免费   1篇
化学   709篇
晶体学   8篇
力学   36篇
数学   104篇
物理学   188篇
  2023年   9篇
  2022年   23篇
  2021年   42篇
  2020年   25篇
  2019年   29篇
  2018年   21篇
  2017年   14篇
  2016年   35篇
  2015年   28篇
  2014年   30篇
  2013年   80篇
  2012年   60篇
  2011年   79篇
  2010年   39篇
  2009年   49篇
  2008年   49篇
  2007年   56篇
  2006年   48篇
  2005年   59篇
  2004年   40篇
  2003年   38篇
  2002年   31篇
  2001年   10篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   7篇
  1996年   10篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1987年   5篇
  1986年   9篇
  1985年   5篇
  1984年   7篇
  1983年   4篇
  1982年   9篇
  1981年   9篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1975年   2篇
  1973年   5篇
  1937年   2篇
  1931年   2篇
  1930年   2篇
排序方式: 共有1045条查询结果,搜索用时 31 毫秒
41.
Bifunctional chelating agents (BFCAs) are small molecules containing a chelating unit, able to strongly coordinate a metal ion, and a reactive functional group, devised to form a stable covalent bond with another molecule. BFCAs are widely employed since their conjugation to a suitable biomolecule (e.g., a peptide or an antibody) allows the synthesis of diagnostic or therapeutic agents that specifically target diseased tissue with metals or radiometals. For this reason, BFCAs find application in diagnostic imaging, molecular imaging, and radiotherapy of cancer. The synthesis of new BFCAs based on a diethylenetriaminepentaacetic acid (DTPA) structure in which one or two carboxylic groups are replaced with phosphonic units is described. The phosphonic group, aside from being a classical isostere of the carboxylic acid in coordination chemistry, allows to modulate the physico-chemical properties of the ligands and of the corresponding complexes.  相似文献   
42.
43.
Most structural bioceramics are comprised of metallic oxides such as alumina and zirconia. They are generally considered to be completely bioinert, but a non-oxide ceramic, silicon nitride, achieves equivalent levels of mechanical reliability while being bioactive. Silicon nitride can not only stimulate cellular proliferation but it is also antipathogenic with demonstrated efficacy against Gram-positive and Gram-negative bacteria, fungi, and viruses. In this work, three physical vapor deposition coatings with different Si:N ratios (silicon-rich, stoichiometric, and nitrogen-rich) were deposited on mirror-polished silica glass substrates. The coatings were characterized by spectroscopic and microscopic techniques and tested in vitro against E. coli and KUSA-A1 mesenchymal cells. Results showed that nitrogen-enriched SixNy has a strong antibacterial effect against E. coli and contributes to cellular proliferation while silicon-enriched SixNy stimulates the production of bone tissue, with higher indexes for mineralization and quality. These results suggest that SixNy's biological properties can be optimized for specific applications by carefully tuning its surface chemistry.  相似文献   
44.
The aim of the study was to create a mathematical model useful for monitoring the release of bioactive aldehydes covalently bonded to the chitosan by reversible imine linkage, considered as a polymer–drug system. For this purpose, two hydrogels were prepared by the acid condensation reaction of chitosan with the antifungal 2-formyl-phenyl-boronic acid and their particularities; influencing the release of the antifungal aldehyde by shifting the imination equilibrium to the reagents was considered, i.e., the supramolecular nature of the hydrogels was highlighted by polarized light microscopy, while scanning electron microscopy showed their microporous morphology. Furthermore, the in vitro fungicidal activity was investigated on two fungal strains and the in vitro release curves of the antifungal aldehyde triggered by the pH stimulus were drawn. The theoretical model was developed starting from the hypothesis that the imine-chitosan system, both structurally and functionally, can be assimilated, from a mathematical point of view, with a multifractal object, and its dynamics were analyzed in the framework of the Scale Relativity Theory. Thus, through Riccati-type gauges, two synchronous dynamics, one in the scale space, associated with the fungicidal activity, and the other in the usual space, associated with the antifungal aldehyde release, become operational. Their synchronicity, reducible to the isomorphism of two SL(2R)-type groups, implies, by means of its joint invariant functions, bioactive aldehyde compound release dynamics in the form of “kink–antikink pairs” dynamics of a multifractal type. Finally, the theoretical model was validated through the experimental data.  相似文献   
45.
Herein, smart coatings based on photo-responsive polymer nanocapsules (NC) and deposited by laser evaporation are presented. These systems combine remotely controllable release and high encapsulation efficiency of nanoparticles with the easy handling and safety of macroscopic substrates. In particular, azobenzene-based NC loaded with active molecules (thyme oil and coumarin 6) were deposited through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on flat inorganic (KBr) and organic (polyethylene, PE) and 3D (acrylate-based micro-needle array) substrates. SEM analyses highlighted the versatility and performance of MAPLE in the fabrication of the designed smart coatings. DLS analyses, performed on both MAPLE- and drop casting-deposited NC, demonstrated the remarkable adhesion achieved with MAPLE. Finally, thyme oil and coumarin 6 release experiments further demonstrated that MAPLE is a promising technique for the realization of photo-responsive coatings on various substrates.  相似文献   
46.
A series of fifteen silver (I) quinoline complexes Q1–Q15 have been synthesized and studied for their biological activities. Q1–Q15 were synthesized from the reactions of quinolinyl Schiff base derivatives L1–L5 (obtained by condensing 2-quinolinecarboxaldehyde with various aniline derivatives) with AgNO3, AgClO4 and AgCF3SO3. Q1–Q15 were characterized by various spectroscopic techniques and the structures of [Ag(L1)2]NO3 Q1, [Ag(L1)2]ClO4 Q6, [Ag(L2)2]ClO4 Q7, [Ag(L2)2]CF3SO3 Q12 and [Ag(L4)2]CF3SO3 Q14 were unequivocally determined by single crystal X-ray diffraction analysis. In vitro antimicrobial tests against Gram-positive and Gram-negative bacteria revealed the influence of structure and anion on the complexes′ moderate to excellent antibacterial activity. In vitro antioxidant activities of the complexes showed their good radical scavenging activity in ferric reducing antioxidant power (FRAP). Complexes with the fluorine substituent or the thiophene or benzothiazole moieties are more potent with IC50 between 0.95 and 2.22 mg/mL than the standard used, ascorbic acid (2.68 mg/mL). The compounds showed a strong binding affinity with calf thymus-DNA via an intercalation mode and protein through a static quenching mechanism. Cytotoxicity activity was examined against three carcinoma cell lines (HELA, MDA-MB231, and SHSY5Y). [Ag(L2)2]ClO4 Q7 with a benzothiazole moiety and [Ag(L4)2]ClO4 Q9 with a methyl substituent had excellent cytotoxicity against HELA cells.  相似文献   
47.
48.
Novel complexes of M2LCl4·nH2O type (M:Ni, n = 4; M:Cu, n = 3 and M:Zn, n = 0; L: ligand resulted from 1,4-phenylenediamine, 3,6-diazaoctane-1,8-diamine and formaldehyde one-pot condensation) were synthesized and characterised by microanalytical, ESI–MS, IR, UV–Vis, 1H NMR and EPR spectra, magnetic data at room temperature and molar conductivities as well. The electrochemical behaviour of complexes was investigated by cyclic voltammetry. Simultaneous TG/DTA measurements were performed in order to evidence the thermal behaviour of the obtained complexes. Processes such as water elimination, fragmentation and oxidative degradation of the organic ligand as well as chloride elimination occurred during thermal decomposition. The antimicrobial assays demonstrate that the compounds exhibited good antibacterial activity, especially against S. aureus and E. coli strains, the most active being the copper(II) complex, which also exhibited the most prominent anti-biofilm effect, suggesting its potential use for the development of new antimicrobial agents. The biological activity was correlated with log P ow values. All complexes disrupt the membrane integrity of HCT 8 tumour cells.  相似文献   
49.
A series of complexes of type [ML(CH3COO)(OH2)2] (M: Co, Ni; HL: 2-[(E)-1H-1,2,4-triazol-3-ylimino)methyl]phenol)) and [M2L2(CH3COO)2(OH2)n] (M: Cu, n = 2; M: Zn, n = 0) were synthesised by template condensation. The compounds were characterised with microanalytical, ESI–MS, IR, electronic, EPR spectra and magnetic data at room temperature. Based on the IR and ESI–MS spectra, a dinuclear structure with the acetate as bridge was proposed for Cu(II) and Zn(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. The thermal analyses have evidenced processes as water elimination, acetate decomposition, as well as oxidative degradation of the Schiff base. The final decomposition product was the most stable metal oxide as indicated by powder X-ray diffraction. The cobalt and copper compounds exhibited a broad spectrum of antibacterial activity towards both planktonic and biofilm-embedded cells. The complexes exhibit a low cytotoxicity except for Cu(II) species that induces the early apoptosis for the HEp 2 cells.  相似文献   
50.
Hydrogen abstractions are important elementary reactions in a variety of reacting media at high temperatures in which oxygenates and hydrocarbon radicals are present. Accurate kinetic data are obtained from CBS‐QB3 ab initio (AI) calculations by using conventional transition‐state theory within the high‐pressure limit, including corrections for hindered rotation and tunneling. From the obtained results, a group‐additive (GA) model is developed that allows the Arrhenius parameters and rate coefficients for abstraction of the α‐hydrogen from a wide range of oxygenate compounds to be predicted at temperatures ranging from 300 to 1500 K. From a training set of 60 hydrogen abstractions from oxygenates by carbon‐centered radicals, 15 GA values (ΔGAVos) are obtained for both the forward and reverse reactions. Among them, four ΔGAVos refer to primary contributions, and the remaining 11 ΔGAVos refer to secondary ones. The accuracy of the model is further improved by introducing seven corrections for cross‐resonance stabilization of the transition state from an additional set of 43 reactions. The determined ΔGAVos are validated upon a test set of AI data for 17 reactions. The mean absolute deviation of the pre‐exponential factors (log A) and activation energies (Ea) for the forward reaction at 300 K are 0.238 log(m3 mol?1 s?1) and 1.5 kJ mol?1, respectively, whereas the mean factor of deviation <ρ> between the GA‐predicted and the AI‐calculated rate coefficients is 1.6. In comparison with a compilation of 33 experimental rate coefficients, the <ρ> between the GA‐predicted values and these experimental values is only 2.2. Hence, the constructed GA model can be reliably used in the prediction of the kinetics of α‐hydrogen‐abstraction reactions between a broad range of oxygenates and oxygenate radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号