首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   56篇
  国内免费   1篇
化学   841篇
晶体学   15篇
力学   35篇
数学   75篇
物理学   215篇
  2023年   7篇
  2022年   25篇
  2021年   22篇
  2020年   32篇
  2019年   25篇
  2018年   29篇
  2017年   29篇
  2016年   54篇
  2015年   40篇
  2014年   51篇
  2013年   82篇
  2012年   99篇
  2011年   74篇
  2010年   41篇
  2009年   41篇
  2008年   87篇
  2007年   48篇
  2006年   47篇
  2005年   42篇
  2004年   39篇
  2003年   27篇
  2002年   33篇
  2001年   8篇
  2000年   6篇
  1998年   4篇
  1997年   6篇
  1996年   12篇
  1995年   4篇
  1994年   3篇
  1991年   7篇
  1990年   5篇
  1986年   8篇
  1985年   10篇
  1984年   10篇
  1983年   5篇
  1982年   3篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   10篇
  1977年   4篇
  1969年   6篇
  1968年   6篇
  1964年   4篇
  1963年   6篇
  1962年   6篇
  1961年   12篇
  1958年   7篇
  1957年   3篇
  1955年   5篇
排序方式: 共有1181条查询结果,搜索用时 12 毫秒
91.
We report here the preparation of a crystalline, pure hexagonal phase of ZnO as hollow 500–800 nm spheroids in the presence of organic bases, such as pyridine, using zinc acetate as the precursor salt. The spheroids exhibit unique 3D hierarchical architectures, like cocoons, and demonstrate improved superhydrophobic (water contact angle, 150°) character due to the inherited air‐trapped capillarity within the cocoon structure. The simple synthetic strategy used in this process is modified hydrothermolysis (MHT), which represents a general approach and may contribute to the formation mechanism of the hollow nanostructures with highly improved porosity. Depending on the concentration of the precursor salt, it has been possible to cover glass plates or the inner wall of a reaction vessel with ZnO nanocrystals. A low salt concentration (<0.01 M ) allows the easy preparation of a superhydrophobic glass surface, whereas a high salt concentration (>0.01 M ) results in the precipitation of cocoons at the bottom of the reaction vessel as a solid mass together with a deposited thin film of ZnO nanocrystals covering the inner wall of the glass vessel. The thickness of the film successively grows through repetitive hydrothermolysis processes for which a low salt concentration (<0.01 M ) was employed. Because of the hollow cocoonlike morphology, the surface area of the film is greatly increased, which makes it accessible for functionalization by incoming substrates from both sides (internally and externally) and helps to drive a competent photocatalytic dye degradation pathway. The heterocyclic base pyridine exclusively develops cocoons. Thus, the mechanism of self‐aggregation of ZnO nanocrystals under MHT reaction conditions has been studied and the characterization of the compounds has been supported with physical measurements.  相似文献   
92.
A variety of ready-to-cook meat products available in Indian supermarkets (mutton mince, chicken mince, chicken chunks, and chicken legs) were studied. The samples were irradiated (2.5 kGy), or left untreated as control, and stored at 0–3 °C for up to 21 days. The effect of irradiation on the microbiological, chemical, and sensory properties was evaluated at intervals during the storage period. Irradiated samples had a longer shelf-life at 0–3 °C compared with the corresponding non-irradiated samples. Fecal coliforms were eliminated by irradiation treatment. Radiation processed samples had lower counts of Staphylococcus spp. There were no significant organoleptic changes in irradiated samples stored at chilled temperatures.  相似文献   
93.
Arun Raina  Christian Linder 《PAMM》2014,14(1):377-378
The current work proposes a finite deformation strong discontinuity approach based modeling of failure in anisotropic materials with reorientation based micromechanical network model for the bulk response. These materials consist of randomly cross-linked one dimensional filaments at their microstructure which undergo non-affine deformation as well as reorientation upon loading before undergoing complete failure. The computationally efficient strong discontinuity approach allows to capture the failure kinematics by introducing a local problem where a strong discontinuity exists, thereby leading to an enhanced deformation gradient. A precise evaluation of the bulk response is done by homogenizing the physical microscopic response of constituent filaments where reorientation is introduced with an initial straightening effect of fiber undulations. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
94.
This paper considers an economic lot-sizing model with non-decreasing capacity constraint, non-increasing setup cost and production cost, and a general inventory cost. We prove that when periodic starting inventory is not less than a certain critical value, it is optimal to produce nothing; this critical value can be computed easily which results in a new effective algorithm.  相似文献   
95.
Nanoscale MolecularDiamond products (various diamondoid materials), obtained from petrochemical feedstocks, have been investigated as additives for polypropylene and polycarbonate. Three of the homologues of this family (diamantane, triamantane, and the [121]tetramantane isomer) have marginal effects on the thermal and mechanical properties of nonpolar/semicrystalline polypropylene. Mixtures of methylated tetramantane nanofillers also increase the stress–strain behavior of polypropylene composites without significantly impacting their glass transition temperatures. The addition of the selected diamondoids to amorphous/moderately polar polycarbonate increases the polymer tensile modulus significantly with marginal increases in the yield stress. The effects of the selected diamondoids on the thermal stability, crystallinity, and optical properties of polypropylene and polycarbonate are also reported. The results for the mechanical properties show that the selected diamondoids behave as plasticizers in polypropylene, whereas in polycarbonate, they act as antiplasticizers without adversely affecting the optical clarity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1077–1089, 2007  相似文献   
96.
In this paper we report a new method of fabrication of surface tensionconfined microfluidic devices on glass. We have also successfully carried out some well-known chemical reactions in these fluidic channels to demonstrate the usefulness of these wall-less microchannels. The confined flow path of liquid was achieved on the basis of extreme differences in hydrophobic and hydrophilic characters of the surface. The flow paths were fabricated by making parallel lines using permanent marker pen ink or other polymer on glass surfaces. Two mirror image patterned glass plates were then sandwiched one on top of the other, separated by a thin gap-created using a spacer. The aqueous liquid moves between the surfaces by capillary forces, confined to the hydrophilic areas without wetting the hydrophobic lines, achieving liquid confinement without physical side-walls. We have shown that the microfluidic devices designed in such a way can be very useful due to their simplicity and low fabrication cost. More importantly, we have also demonstrated that the minimum requirement of such a working device is a hydrophilic line surrounded by hydrophobic environment, two walls of which are constituted of air and the rest is made of a hydrophobic surface.  相似文献   
97.
Divinylbenzene derivatives represent an important class of molecular building blocks in organic chemistry and materials science. Reported herein is the palladium‐catalyzed synthesis of divinylbenzenes by meta‐C? H olefination of sulfone‐based arenes. Successful sequential olefinations in a position‐selective manner provided a novel route for the synthesis of hetero‐dialkenylated products, which are difficult to access using conventional methods. Additionally, 1,3,5‐trialkenylated compounds can be generated upon successful removal of the directing group.  相似文献   
98.
99.
A new prenylated biflavonoid, named dulcisbiflavonoid A, together with five biflavonoids were isolated from the leaves of Garcinia dulcis. Their structures were elucidated by analysing their spectroscopic data, especially 1D and 2D NMR.  相似文献   
100.
The search of eco-friendly technologies for nano-synthesis is significant to expand their applications in human welfare. Nowadays, various inorganic nanoparticles with beneficial features have been synthesized via physical, chemical, and biological means. Significant biological applications of silver nanoparticles include on-infectious microbes, target drug delivery, cancer and vector-borne disease control. Their syntheses have been tested from plant fungi, bacteria, and viruses. The bacterial mediated synthesis of silver, gold, zinc and other metal leads to a milestone in nano-medicines. Thus, in this review, we focus on the contribution of Bacilli in the synthesis of silver nanoparticles, the mechanism of action and their potential application in the welfare of human beings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号