DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low‐Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+–DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure‐dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low‐micromolar range. 相似文献
Highly efficient, visible light induced photocatalytic H2 production was achieved over a TiO2 system sensitized by binuclear RuII bipyridyl (bpy) complex [Ru2(bpy)4(BL)](ClO4)2 (BL=bridging ligand) without Pt loading, which is almost unaffected by pH in aqueous solution in the wide range from pH 5.00 to 10.50, although the dye molecules can only be loosely attached to TiO2 due to the absence of terminal carboxyl groups. The photocatalyst shows remarkable long‐term stability and reproducibility of H2 evolution even after exchanging the aqueous triethanolamine solution. The amount of H2 evolved over 100 mg of photocatalyst in 27 h of irradiation corresponds to a turnover number of about 75 340, and the apparent quantum yields are estimated to be 16.8 and 7.3 % under 420 and 475 nm monochromatic light irradiation, respectively. A comparative study shows that the loosely attached dye [Ru2(bpy)4(BL)](ClO4)2 has higher photosensitization efficiency than tightly linked dyes with terminal carboxyl groups, such as [Ru2(dcbpy)4(BL)](ClO4)2 and N719. It can be rationalized by their different coordination, physicochemical, electron‐injection, and back‐transfer properties. 相似文献
Highly efficient, visible light induced photocatalytic H(2) production was achieved over a TiO(2) system sensitized by binuclear Ru(II) bipyridyl (bpy) complex [Ru(2) (bpy)(4) (BL)](ClO(4) )(2) (BL=bridging ligand) without Pt loading, which is almost unaffected by pH in aqueous solution in the wide range from pH?5.00 to 10.50, although the dye molecules can only be loosely attached to TiO(2) due to the absence of terminal carboxyl groups. The photocatalyst shows remarkable long-term stability and reproducibility of H(2) evolution even after exchanging the aqueous triethanolamine solution. The amount of H(2) evolved over 100?mg of photocatalyst in 27?h of irradiation corresponds to a turnover number of about 75?340, and the apparent quantum yields are estimated to be 16.8 and 7.3?% under 420 and 475?nm monochromatic light irradiation, respectively. A comparative study shows that the loosely attached dye [Ru(2) (bpy)(4) (BL)](ClO(4) )(2) has higher photosensitization efficiency than tightly linked dyes with terminal carboxyl groups, such as [Ru(2) (dcbpy)(4) (BL)](ClO(4) )(2) and N719. It can be rationalized by their different coordination, physicochemical, electron-injection, and back-transfer properties. 相似文献
Let p be an odd prime, , D a difference set mod p having a nontrivial multiplier, and ν = H(ζ), where H(x) is the Hall polynomial of D. For any α = Σi=0p?1aiζi with rational ai denote δ(α) = max ∥ ai ? aj ∥. Assuming that there are no nontrivial multiplicative dependence relations among the conjugates of ν, we obtain results for . We then show that for most known families of difference sets mod p the required independence result is valid. A conjecture concerning the exact value of the first number is stated. The conjecture is confirmed in certain particular cases. 相似文献
Nuclear spin–lattice (T1) and spin–spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single‐scan measurement of a 2D T1–T2 correlation map. The method shortens the experimental time by one to three orders of magnitude as compared to the conventional method, offering an unprecedented opportunity to study molecular processes in real‐time. We demonstrate that, despite the tremendous speed‐up, the T1–T2 correlation maps determined by the single‐scan method are in good agreement with the maps measured by the conventional method. The concept of the single‐scan T1–T2 correlation experiment is applicable to a broad range of other multidimensional relaxation and diffusion experiments. 相似文献
Laplace NMR (LNMR) consists of relaxation and diffusion measurements providing detailed information about molecular motion and interaction. Here we demonstrate that ultrafast single‐ and multidimensional LNMR experiments, based on spatial encoding, are viable with low‐field, single‐sided magnets with an inhomogeneous magnetic field. This approach shortens the experiment time by one to two orders of magnitude relative to traditional experiments, and increases the sensitivity per unit time by a factor of three. The reduction of time required to collect multidimensional data opens significant prospects for mobile chemical analysis using NMR. Particularly tantalizing is future use of hyperpolarization to increase sensitivity by orders of magnitude, allowed by single‐scan approach. 相似文献
A new supramolecular system based on halogen‐bonded macromolecular substances is presented. Binding and complex formation between a halogen bond acceptor N‐benzyl ammonium resorcinarene bromide and a library of polymeric halogen bond donors based on iodotetrafluorophenoxy functionality is shown. The complex formation was confirmed in liquid state by dynamic light scattering and transmission electron microscopy. Spectroscopic measurements in the solid state verify the halogen bonding. In particular, the study shows that both homopolymers and polyethylene glycol block copolymers act as effective halogen bond donors leading to polymer‐architecture‐dependent complex morphologies. 相似文献
DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer‐level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real‐world applications of DNA‐based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions. 相似文献