首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
化学   50篇
力学   1篇
数学   1篇
物理学   5篇
  2020年   1篇
  2019年   2篇
  2013年   1篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2004年   7篇
  2003年   1篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1992年   1篇
  1988年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有57条查询结果,搜索用时 328 毫秒
31.
32.
Electrospray ionization mass Spectrometry (ESI-MS) was used to measure conformational changes within the DNA-binding domain of the vitamin D receptor (VDR DBD) upon binding zinc (Zn2+). As increasing concentrations of Zn2+ were added to the VDR DBD, a gradual shift in the mass envelope to lower charge states was observed in the multiply charged spectrum. The shift in the charge states was correlated to changes observed in the far-ultraviolet circular dichroic (far-UV CD) spectrum of the protein as it was titrated with Zn2+. Both the multiply charged ESI and far-UV CD spectra of the Zn2+-titrated protein show that the binding of the first Zn2+ ion to the protein results in very little conformational change in the protein. The binding of a second Zn2+ ion resulted in a significant alteration in the structure of the protein as indicated by changes in both the multiply charged ESI and far-UV CD spectra. Much smaller changes were seen within the multiply charged ESI or far-UV CD spectra upon increasing the Zn2+ concentration beyond 2 mol/mol of protein. The results presented indicate that ESI-MS in combination with CD is a powerful method to measure gross conformational changes induced by the binding of metals to metalloproteins.  相似文献   
33.
In the present study we describe conditions that permit the characterization of noncovalent protein–substrate complexes in aqueous solution by microspray electrospray ionization-mass spectrometry (ESI-MS), using a heated transfer capillary at low temperature (45 °C). Specifically, we examined the binding of calmodulin to two polypeptides; the calmodulin-binding domain of calmodulin-dependent protein kinase II (CamK-II) and melittin. Calmodulin, a well known calcium-binding protein, binds to a number of small amphipathic peptides in a calcium-dependent manner. Our results directly show that both peptides form equimolar complexes with calmodulin only in the presence of calcium. The stoichiometry necessary for the formation of each complex was 1:1:4 for calmodulin:peptide (melittin or CamK-II):Ca2+, respectively. Furthermore, it is demonstrated that the detection of the complex in ESI-MS is source temperature dependent.  相似文献   
34.
35.
We report a simple synthesis protocol for making phthalocyanines (Pcs) starting from phthalonitriles. This method is general and requires no specialised equipment. The complexes are isolated and characterised using X‐ray diffraction, NMR, FTIR and Raman spectroscopy and high‐resolution mass spectrometry. First, we study and present a one‐step synthesis route to a metal‐free Pc (H2PcH16), as well as to the corresponding MPcH16 complexes of Mn, Fe, Co, Ni, Cu and Zn. Then, we show that this route can also be used to make the fluorinated Pc analogues (MPcF16). Finally, we present a new and useful procedure for inserting a metal ion into a metal‐free H2PcH16 ring, by direct metalation, yielding the corresponding MPcH16 complex. This last method is especially useful if you want to make different MPcH16 complexes.  相似文献   
36.
The previous decade witnessed an enormous number of studies with the singular goal of identifying protein biomarkers for diseases such as cancer. A large majority of these studies have focused on comparative studies of serum or plasma obtained from disease-affected and control patients. In these studies, proteins identified in the samples using MS were compared with the hope that differences between samples would reveal useful biomarkers. Unfortunately, finding clinically relevant biomarkers has often been elusive and frustrating. As with most research efforts, both successes and failures, much has been learned about what strategies work and which do not. Part of the problem can be attributed to underestimating the effort required to discover novel biomarkers and depending too heavily on MS analysis of peripheral blood samples. Fortunately, the future for biomarker discovery still appears bright. MS technology continues to increase in sensitivity, throughput, and accuracy while novel types of samples and clever experimental designs coupled with innovative bioinformatics will make this vision of routine biomarker discovery a reality. To achieve ultimate success is going to require concomitant application of a number of different technologies, all providing the information necessary for discovering and validating clinically useful biomarkers.  相似文献   
37.
38.
A method is described for identifying intact proteins from genomic databases using a combination of accurate molecular mass measurements and partial amino acid content. An initial demonstration was conducted for proteins isolated from Escherichia coli (E. coli) using a multiple auxotrophic strain of K12. Proteins extracted from the organism grown in natural isotopic abundance minimal medium and also minimal medium containing isotopically labeled leucine (Leu-D10), were mixed and analyzed by capillary isoelectric focusing (CIEF) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The incorporation of the isotopically labeled Leu residue has no effect on the CIEF separation of the protein, therefore both versions of the protein are observed within the same FTICR spectrum. The difference in the molecular mass of the natural isotopic abundance and Leu-D10 isotopically labeled proteins is used to determine the number of Leu residues present in that particular protein. Knowledge of the molecular mass and number of Leu residues present can be used to unambiguously identify the intact protein. Preliminary results show the efficacy of this method for unambiguously identifying proteins isolated from E. coli.  相似文献   
39.
The electroreduction of carbon dioxide using renewable electricity is an appealing strategy for the sustainable synthesis of chemicals and fuels. Extensive research has focused on the production of ethylene, ethanol and n-propanol, but more complex C4 molecules have been scarcely reported. Herein, we report the first direct electroreduction of CO2 to 1-butanol in alkaline electrolyte on Cu gas diffusion electrodes (Faradaic efficiency=0.056 %, j1-Butanol=−0.080 mA cm−2 at −0.48 V vs. RHE) and elucidate its formation mechanism. Electrolysis of possible molecular intermediates, coupled with density functional theory, led us to propose that CO2 first electroreduces to acetaldehyde-a key C2 intermediate to 1-butanol. Acetaldehyde then undergoes a base-catalyzed aldol condensation to give crotonaldehyde via electrochemical promotion by the catalyst surface. Crotonaldehyde is subsequently electroreduced to butanal, and then to 1-butanol. In a broad context, our results point to the relevance of coupling chemical and electrochemical processes for the synthesis of higher molecular weight products from CO2.  相似文献   
40.
The heat transfer performance of a micro-vaporizer has been measured by conventional methods (using temperatures, flow rates, effective power input). The study was carried out for laminar flow in channels (5 mm×3 cm×200 μm) micro-structured with square obstacles to increase the specific area. The results show that high heat transfer coefficients (1300– 2500 W m−2/C−1) can be reached in such a micro-structured channel. Image analysis was done to estimate the volume vapour fraction, which can be converted into the mass vapour fraction using a slip ratio and avoids the need for any temperature or electric power input measurements. The estimation of this slip ratio is discussed in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号