首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   3篇
化学   84篇
晶体学   5篇
力学   3篇
数学   25篇
物理学   45篇
  2024年   3篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   7篇
  2018年   3篇
  2017年   2篇
  2016年   11篇
  2015年   4篇
  2014年   9篇
  2013年   10篇
  2012年   13篇
  2011年   13篇
  2010年   7篇
  2009年   2篇
  2008年   10篇
  2007年   13篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
21.
    
Stone or rendered facades of historical buildings often encounter loss of cohesion after long-term weathering. Specialist consolidating agents containing nanoparticles which can penetrate the degraded layer are used to extend the lifetime of such facades. Clay mortar prepared in the laboratory was used in the present study as a material for testing the effectiveness of several consolidating agents. Changes in porosity after treatment of the sample layers were assessed using small-angle neutron scattering, mercury intrusion porosimetry and scanning electron microscopy techniques. The scattering differed for the various samples, mainly in the medium range of scattering vector magnitudes. The cause of the scattering was ascribed to three populations of pores: large (micrometres), medium-sized (thousands of ångströms) and small (hundreds of ångströms). While the non-treated sample and the sample treated with a silicic acid ester-based product do not exhibit significant differences, the sample treated with a nano-lime suspension shows a decrease of 16% in the volume fraction of medium-sized pores. A difference was also observed in the sample treated with a dihydrogen ammonium phosphate solution: the size of the medium pores increased while their volume fraction decreased, and a change in the large pores was observed. The modelled small pores remained unaffected by the consolidating treatment.  相似文献   
22.
    
Dependence of NH3 oxidation on the state and dispersion of Pt species in Pt/γ-Al2O3 catalysts was investigated. Prereduced Pt/γ-Al2O3 catalysts containing Pt0 nanoparticles exhibited significantly higher activity than preoxidized ones with the same Pt dispersion. The most significant improvement of the catalytic activity (TOF increased by 30 times) was observed when the size of Pt0 particles increased from ∼1 to ∼8 nm. N2 selectivity was found to be mainly determined by the reaction temperature, with a minor influence of Pt particle size. Preoxidized catalysts containing ionic Pt were activated by the reaction medium, while partial deactivation was observed for the prereduced ones. The activity improvement was associated with the presence of Pt4+/Pt2+ species on the surface of preoxidized catalysts. The activity decrease of the prereduced catalysts was due to the partial oxidation and subsequent redispersion of Pt particles. Introduction of H2O and CO2 to the reaction mixture only moderately influenced NH3 oxidation activity shifting NH3 conversion curves by about +15 °C.  相似文献   
23.
    
This paper investigates the structural properties of 2,5-bis(3-bromophenyl)furan polymorphs, focusing on the halogen interactions and their influence on crystal mechanical properties. In this study, three different polymorphic modifications were obtained which crystallize in the orthorhombic system. Two of the polymorphs possess halogen interactions but only one exhibits elastic properties. Through X-ray diffraction, crystallographic analysis and computational modelling, intricate bromine-based halogen interactions and their impact on the packing arrangement and stability were revealed. The correlation between these interactions and crystal properties, including molecular arrangement and intermolecular forces, is explored. Understanding these relationships is vital for materials design and supramolecular chemistry, enabling the rational synthesis of tailored materials.  相似文献   
24.
We study a change in mechanical properties of binary systems subjected to irradiation influence described by ballistic flux of atomic mixing having regular and stochastic contributions. By using numerical modeling based on the phase field approach we study dynamics of deformation fields in a previously irradiated system and in the binary system deformed during irradiation. An influence of both deterministic and stochastic components of ballistic flux onto both yield strength and ultimate strength is studied. We have found that degradation of mechanical properties relates to the formation of percolating clusters of shear bands. Considering a hardening coefficient we analyze stages of plastic deformation of both initially irradiated alloy and alloy subjected to sustained irradiation. Stability of binary alloy under mechanical loading in the form of shear strain with a constant rate and cyclic deformation is discussed.  相似文献   
25.
Temperature dependence of electrical conductivity, σ(T), thermoelectric power, S(T), and viscosity, η(T), of Pb-based eutectic systems was studied. Anomalous changes of thermophysical properties in liquid binary Pb26.1Sn73.9, Pb44Bi56, Pb83Mg17 and ternary Bi46Pb29Sn25 eutectics occurred well above the liquidus. The temperature range of anomalies reached hundreds of degrees. The obtained results are interpreted assuming that microsegregation areas exist in the eutectic systems.  相似文献   
26.
By using four labels of the 3-hydroxyflavone family displaying selective sensitivity to hydrogen bond (HB) donors and poor response to other polar molecules, we developed an approach for measuring local water concentration [H(2)O](L) (or partial volume of water: W(A) = [H(2)O](L)/55.6) in the label surrounding both in solvent mixtures and in biomolecules by the intensity ratio of two emissive forms of the label, N*/T*. Using a series of binary water/solvent mixtures with limited preferential solvation effects, a linear dependence of log(N*/T*) on the local concentration of HB donor was obtained and then used as a calibration curve for estimating the W(A) values in the surroundings of the probes conjugated to biomolecules. By this approach, we estimated the hydration of the labels in different peptides and their complexes with DNAs. We found that W(A) values for the label at the peptide N-terminus are lower (0.63-0.91) than for free labels and depend strongly on the nature of the N-terminal amino acid. When complexed with different DNAs, the estimated hydration of the labels conjugated to the labeled peptides was much lower (W(A) = 0-0.47) and depended on the DNA nature and linker-label structure. Thus, the elaborated method allows a site-specific evaluation of hydration at the surface of a biomolecule through the determination of the partial volume of water. We believe the developed procedure can be successfully applied for monitoring hydration at the surface of any biomolecule or nanostructure.  相似文献   
27.
28.
29.
ABSTRACT

We study microstructure transformation in Zr–Nb system under neutron irradiation and its mechanical properties change under mechanical loads in a form of shear deformation by using phase field methodology. The developed phase field approach takes into account defects dynamics based on reaction rate theory and elastic contribution to study mechanical properties change. A numerical modeling is provided in three stages: sample preparation, irradiation of the prepared sample and mechanical loading of the irradiated sample. A precipitation of β-Niobium particles of the size of several nanometers is discussed. Results of phase field modeling indicate that β-Niobium particles grow slowly during irradiation due to point defects rearrangement. Statistical analysis of dynamics of radiation-induced microstructure transformations is provided. Simulation results of shear deformation of pre-irradiated and post-irradiated alloys are discussed. Maps of local distribution of strain and stress and strain–stress curves are obtained. Results are verified with experimental data.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号