首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
化学   31篇
力学   4篇
数学   9篇
物理学   17篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
排序方式: 共有61条查询结果,搜索用时 165 毫秒
31.
The purpose of this study is to report the significant differences found in the identification of lesions in cervical spinal cord of two patients with multiple sclerosis when using the BLADE T2-TSE and BLADE T2-TIRM sequences as opposed to the conventional T2-TSE and T2-TIRM sequences for sagittal acquisition at 1.5 T. In both patients, one more lesion was identified with the BLADE sequences than with the conventional ones. Consequently, we suggest the use of BLADE T2-TSE and BLADE T2-TIRM sequences in place of conventional ones for sagittal examination of the cervical spinal cord of multiple sclerosis patients. The advantages of ΤΙRΜ to reveal the pathology of the cervical spinal cord and the advantage of BLADE sequences to improve image quality should be combined in a sequence that could be ideal for cervical spinal cord examinations.  相似文献   
32.
The frequency and temperature dependence of ac-conductivity and phase shift of polycrystalline inclusion compounds (β-CD)2·KI7·16H2O and (β-CD)2·LiI7·14H2O (β-CD=β-cyclodextrin) has been investigated over the frequency and temperature ranges of 0-100 kHz and 240-420 K. A Raman spectroscopic study and calorimetric measurements are also accomplished. The Arrhenius exponential behaviour of the ac-conductivity for T>275 K is caused by the contribution of the metal cations K+, Li+. This contribution is facilitated by the water-net via the Grotthuss mechanism. The ac conductivity starts deviating from the exponential behaviour with lower increasing rate, at 347 K for β-K and at 353 K for β-Li reaching a maximum value at 371.1 and 361.8 K, respectively, and then decreases rapidly due to the gradual removal of all the water molecules. The values 371.1 and 361.8 K are characterized as semiconductor to metal transition temperatures. The shift of the initial Raman peak at 179 cm−1 to the final value 165 cm−1 as the temperature increases reveals the lengthening of I2 units via a charge transfer interaction in I7 units. A second topical maximum value of conductivity appears at 399.7 K for β-K and 403 K for β-Li, attributed to the sublimation of I2.  相似文献   
33.
Ion–protein interactions are important for protein function, yet challenging to rationalize owing to the multitude of possible ion–protein interactions. To explore specific ion effects on protein binding sites, we investigate the interaction of different salts with the zwitterionic peptide triglycine in solution. Dielectric spectroscopy shows that salts affect the peptide's reorientational dynamics, with a more pronounced effect for denaturing cations (Li+, guanidinium (Gdm+)) and anions (I?, SCN?) than for weakly denaturing ones (K+, Cl?). The effects of Gdm+ and Li+ were found to be comparable. Molecular dynamics simulations confirm the enhanced binding of Gdm+ and Li+ to triglycine, yet with a different binding geometry: While Li+ predominantly binds to the C‐terminal carboxylate group, bidentate binding to the terminus and the nearest amide is particularly important for Gdm+. This bidentate binding markedly affects peptide conformation, and may help to explain the high denaturation activity of Gdm+ salts.  相似文献   
34.
If L is a continuous symmetric n‐linear form on a real or complex Hilbert space and $\widehat{L}$ is the associated continuous n‐homogeneous polynomial, then $\Vert L\Vert =\big \Vert \widehat{L}\big \Vert$. We give a simple proof of this well‐known result, which works for both real and complex Hilbert spaces, by using a classical inequality due to S. Bernstein for trigonometric polynomials. As an application, an open problem for the optimal lower bound of the norm of a homogeneous polynomial, which is a product of linear forms, is related to the so‐called permanent function of an n × n positive definite Hermitian matrix. We have also derived generalizations of Hardy‐Hilbert's inequality.  相似文献   
35.
Hamiltonian Monte Carlo (HMC) improves the computational efficiency of the Metropolis–Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC’s benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggest that our method improves RHMC’s overall computational efficiency in the cases considered. All computer programs and datasets are available online (http://www.ics.uci.edu/babaks/Site/Codes.html) to allow replication of the results reported in this article.  相似文献   
36.
We establish large deviation estimates for the optimal filter where the observation process is corrupted by a fractional Brownian motion. The observation process is transformed to an equivalent model which is driven by a standard Brownian motion. The large deviations in turn are established by proving qualitative properties of perturbations of the equivalent observation process.  相似文献   
37.
A simple and reliable headspace GC‐flame ionization detection (HS‐GC‐FID) method has been developed and validated for the simultaneous determination of seven volatile compounds of forensic interest: sevoflurane, desflurane, ethanol, methanol, 1‐propanol, acetone and acetaldehyde. All seven compounds including acetonitrile (internal standard) eluted within 10 min and were well resolved with no endogenous interference. Good linearity was observed in the range of 1–12 mg/dL for both anesthetics and 2.5–40 mg/dL for the other five analytes. The method showed good precision, sensitivity and repeatability. Most of the analytes remained stable during the storage of samples at 4°C. Desflurane and acetone degraded (>10%), when the samples remained on the autosampler for more than 2 and 3 h, respectively. The method was finally applied on clinical and post‐mortem blood and urine samples. The clinical samples were collected both from patients who underwent surgery, as well as from the occupationally exposed medical and nursing staff of the university hospital, working in the operating rooms. The hospital staff samples were found negative for all compounds, while the patients' samples were found positive for the anesthetic administered to the patient. The post‐mortem blood samples were found positive for ethanol and acetaldehyde.  相似文献   
38.
The Sanchez–Lacombe Equation of State (SL EoS) is used to model the solubility of different industrial alkane penetrants in polyethylene to explain the importance of considering different diluents for different processes, and the impact that this choice can have on operating conditions, especially for the production of linear low density polyethylene (LLDPE). Extension of this approach to ternary (ethylene/penetrant/LLDPE) systems shows the effect of composition of penetrant/ethylene mixtures on the solubility of such mixtures in LLDPE and swelling of the polymer phase at conditions of industrial relevance. This analysis reveals that using a constant polymer density instead of that predicted by the SL EoS can result in erroneous calculations of the particle size distribution developments in an olefin polymerization reactor.  相似文献   
39.
40.
Advances in Data Analysis and Classification - This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号