首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   21篇
  国内免费   2篇
化学   254篇
力学   4篇
数学   9篇
物理学   30篇
  2023年   3篇
  2022年   9篇
  2021年   16篇
  2020年   10篇
  2019年   9篇
  2018年   12篇
  2017年   1篇
  2016年   15篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   10篇
  2011年   27篇
  2010年   9篇
  2009年   5篇
  2008年   16篇
  2007年   13篇
  2006年   20篇
  2005年   12篇
  2004年   14篇
  2003年   7篇
  2002年   15篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   9篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1968年   3篇
  1967年   1篇
  1965年   1篇
  1930年   1篇
  1902年   1篇
排序方式: 共有297条查询结果,搜索用时 16 毫秒
11.
This work reveals ambident nucleophilic reactivity of imidazolium cations towards carbonyl compounds at the C2 or C4 carbene centers depending on the steric properties of the substrates and reaction conditions. Such an adaptive behavior indicates the dynamic nature of organocatalysis proceeding via a covalent interaction of imidazolium carbenes with carbonyl substrates and can be explained by generation of the H-bonded ditopic carbanionic carbenes.  相似文献   
12.
N-Heterocyclic carbene (NHC) ligands are ubiquitously utilized in catalysis. A common catalyst design model assumes strong M–NHC binding in this metal–ligand framework. In contrast to this common assumption, we demonstrate here that lability and controlled cleavage of the M−NHC bond (rather than its stabilization) could be more important for high-performance catalysis at low catalyst concentrations. The present study reveals a dynamic stabilization mechanism with labile metal–NHC binding and [PdX3][NHC-R]+ ion pair formation. Access to reactive anionic palladium intermediates formed by dissociation of the NHC ligands and plausible stabilization of the molecular catalyst in solution by interaction with the [NHC-R]+ azolium ion is of particular importance for an efficient and recyclable catalyst. These ionic Pd/NHC complexes allowed for the first time the recycling of the complex in a well-defined form with isolation at each cycle. Computational investigation of the reaction mechanism confirms a facile formation of NHC-free anionic Pd in polar media through either Ph–NHC coupling or reversible H–NHC coupling. The present study formulates novel ideas for M/NHC catalyst design.  相似文献   
13.
Cyanine dyes are broadly used for fluorescence imaging and other photonic applications. 3,3′-Diethylthiacyanine (THIA) is a cyanine dye composed of two identical aromatic heterocyclic moieties linked with a single methine, –CH. The torsional degrees of freedom around the methine bonds provide routes for non-radiative decay, responsible for the inherently low fluorescence quantum yields. Using transient absorption spectroscopy, we determined that upon photoexcitation, the excited state relaxes along two parallel pathways producing three excited-state transients that undergo internal conversion to the ground state. The media viscosity impedes the molecular modes of ring rotation and preferentially affects one of the pathways of non-radiative decay, exerting a dominant effect on the emission properties of THIA. Concurrently, the polarity affects the energy of the transients involved in the decay pathways and further modulates the kinetics of non-radiative deactivation.  相似文献   
14.
The zeta-potentials of silica, copper, platinum and gold particles have been measured as a function of pH. The isoelectric points were found to be at pH 3.0, 5.8, 3.0 and 3.5, respectively. In the pH range 3.0 to 5.8 copper and silica particles are oppositely charged and accordingly the coating of silica with copper particles could be demonstrated. In the case of gold and platinum the sign of the charge is such that direct adhesion to silica particles cannot be expected and this was also demonstrated in the case of platinum.  相似文献   
15.
An atom-economic ring construction approach to the synthesis of α-(hetero)arylfurans based on renewable furanic platform chemicals has been developed. Corresponding compounds have been prepared in good to excellent yields via [2+2+2] and [4+2] cycloaddition reactions using metal-catalyzed or photoredox protocols. Easily available HMF-based 2-hydroxymethyl-5-ethynylfuran and 2-hydroxymethyl-5-cyanofuran were used as starting materials. A synthetic route with an improved carbon economy factor has been implemented to achieve sustainability aim. The possible application of arylfurans as molecular conductors has been investigated by DFT calculations, which revealed excellent charge transfer properties. As a future perspective, integration of biomass processing strategy into manufacturing of molecular electronics was pointed out to achieve the aim of sustainability.  相似文献   
16.
Acetylene surrogates are efficient tools in modern organic chemistry with largely unexplored potential in the construction of heterocyclic cores. Two novel synthetic paths to 3,6-disubstituted pyridazines were proposed using readily available acetylene surrogates through flexible C2 unit installation procedures in a common reaction space mode (one-pot) and distributed reaction space mode (two-chamber): (1) an interaction of 1,2,4,5-tetrazine and its acceptor-functionalized derivatives with a CaC2−H2O mixture performed in a two-chamber reactor led to the corresponding pyridazines in quantitative yields; (2) [4+2] cycloaddition of 1,2,4,5-tetrazines to benzyl vinyl ether can be considered a universal synthetic path to a wide range of pyridazines. Replacing water with D2O and vinyl ether with its trideuterated analog in the developed procedures, a range of 4,5-dideuteropyridazines of 95–99% deuteration degree was synthesized for the first time. Quantum chemical modeling allowed to quantify the substituent effect in both synthetic pathways.  相似文献   
17.
The catalyst-free conjugate addition of pyrroles to β-Fluoro-β-nitrostyrenes was investigated. The reaction was found to proceed under solvent-free conditions to form 2-(2-Fluoro-2-nitro-1-arylethyl)-1H-pyrroles. The effectiveness of this approach was demonstrated through the preparation of a series of the target products in a quantitative yield. The kinetics of a conjugate addition of pyrrole was studied in detail to reveal the substituent effect and activation parameters of the reaction. The subsequent base-induced elimination of nitrous acid afforded a series of novel 2-(2-Fluoro-1-arylvinyl)-1H-pyrroles prepared in up to an 85% isolated yield. The two-step sequence herein proposed is an indispensable alternative to a direct reaction with elusive and unstable 1-Fluoroacetylenes.  相似文献   
18.
A new photoacid that reversibly changes from a weak to a strong acid under visible light was designed and synthesized. Irradiation generated a metastable state with high C?H acidity due to high stability of a trifluoromethyl‐phenyl‐tricyano‐furan (CF3PhTCF) carbanion. This long‐lived metastable state allows a large proton concentration to be reversibly produced with moderate light intensity. Reversible pH change of about one unit was demonstrated by using a 0.1 mM solution of the photoacid in 95 % ethanol. The quantum yield was calculated to be as high as 0.24. Kinetics of the reverse process can be fitted well to a second‐order‐rate equation with k=9.78×102 M ?1 s?1. Response to visible light, high quantum yield, good reversibility, large photoinduced proton concentration under moderate light intensity, and good compatibility with organic media make this photoacid a promising material for macroscopic control of proton‐transfer processes in organic systems.  相似文献   
19.
Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymatic attachments of target proteins with ADP-ribose units donated by nicotinamide adenine dinucleotide (NAD+). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment. Despite these successes, our understanding about PARP1 remains limited, partially due to the presence of various ADP-ribosylation reactions catalyzed by other PARPs and their overlapped cellular functions. Here we report a synthetic NAD+ featuring an adenosyl 3′-azido substitution. Acting as an ADP-ribose donor with high activity and specificity for human PARP1, this compound enables labelling and profiling of possible protein substrates of endogenous PARP1. It provides a unique and valuable tool for studying PARP1 in biology and pathology and may shed light on the development of PARP isoform-specific modulators.

An analogue of nicotinamide adenine dinucleotide (NAD+) featuring an azido group at 3′-OH of adenosine moiety is found to possess high specificity for human PARP1-catalyzed protein poly-ADP-ribosylation.  相似文献   
20.
A new method was developed for the selective gram‐scale synthesis of 2,5‐diformylfuran (DFF), which is an important chemical with a high application potential, via oxidation of biomass‐derived 5‐hydroxylmethylfurfural (HMF) catalyzed by 4‐acetylamino‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (4‐AcNH‐TEMPO) in a two‐phase system consisting of a methylene chloride and aqueous solution containing sodium hydrogen carbonate and potassium iodide. The key feature of this method is the generation of the I2 (co‐)oxidant by anodic oxidation of iodide anions during pulse electrolysis. In addition, the electrolyte can be successfully recycled five times while maintaining a 62–65 % yield of DFF. This novel method provides a sustainable pathway for waste‐free production of DFF without the use of metal catalysts and expensive oxidants. An advantage of electrooxidation is utilized in the preparation of demanding chemical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号