首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   16篇
数学   1篇
物理学   5篇
  2023年   2篇
  2022年   1篇
  2012年   2篇
  2011年   4篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2002年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
21.
Immobilization of cells inside microfluidic devices is a promising approach for enabling studies related to drug screening and cell biology. Despite extensive studies in using grooved substrates for immobilizing cells inside channels, a systematic study of the effects of various parameters that influence cell docking and retention within grooved substrates has not been performed. We demonstrate using computational simulations that the fluid dynamic environment within microgrooves significantly varies with groove width, generating microcirculation areas in smaller microgrooves. Wall shear stress simulation predicted that shear stresses were in the opposite direction in smaller grooves (25 and 50 microm wide) in comparison to those in wider grooves (75 and 100 microm wide). To validate the simulations, cells were seeded within microfluidic devices, where microgrooves of different widths were aligned perpendicularly to the direction of the flow. Experimental results showed that, as predicted, the inversion of the local direction of shear stress within the smaller grooves resulted in alignment of cells on two opposite sides of the grooves under the same flow conditions. Also, the amplitude of shear stress within microgrooved channels significantly influenced cell retainment in the channels. Therefore, our studies suggest that microscale shear stresses greatly influence cellular docking, immobilization, and retention in fluidic systems and should be considered for the design of cell-based microdevices.  相似文献   
22.
Ultra wide-field lens-free monitoring of cells on-chip   总被引:1,自引:0,他引:1  
We experimentally and theoretically demonstrate the proof-of-principle of a new lens-free cell monitoring platform that involves using an opto-electronic sensor array to record the shadow image of cells onto the sensor plane. This technology can monitor/count cells over a field-of-view that is more than two orders of magnitude larger than that of a conventional light microscope. Furthermore, it does not require any mechanical scanning or optical elements, such as microscope objectives or lenses. We also show that this optical approach can conveniently be combined with microfluidic channels, enabling parallel on-chip monitoring of various different cell types, e.g., blood cells, NIH-3T3 fibroblasts, murine embryonic stem cells, AML-12 hepatocytes. An important application of this approach could be a miniaturized point-of-care technology to obtain CD4 T lymphocyte counts of HIV infected patients in resource limited settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号