首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   7篇
  国内免费   4篇
化学   167篇
晶体学   4篇
力学   3篇
数学   9篇
物理学   52篇
  2024年   3篇
  2023年   4篇
  2022年   32篇
  2021年   20篇
  2020年   14篇
  2019年   11篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   12篇
  2012年   9篇
  2011年   15篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   8篇
  2003年   14篇
  2002年   26篇
  2001年   6篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
81.
Hepatitis C virus (HCV) is a major health problem across the world affecting the people of all age groups. It is the main cause of hepatitis and at chronic stage causes liver cirrhosis and hepatocellular carcinoma. Various therapeutics are made against HCV but still there is a need to find out potential therapeutics to combat the virus. The goal of this study is to identify the phytochemicals of Azadirachta indica leaves having antiviral activity against HCV NS3 protease through molecular docking and simulation approach. Results show that the compound 3-Deacetyl-3-cinnamoyl-azadirachtin possesses good binding properties with HCV NS3/4A protease. It can be concluded from this study that Deacetyl-3-cinnamoyl-azadirachtin may serve as a potential inhibitor against NS3/4A protease.  相似文献   
82.
In this paper, we propose a three-term conjugate gradient method via the symmetric rank-one update. The basic idea is to exploit the good properties of the SR1 update in providing quality Hessian approximations to construct a conjugate gradient line search direction without the storage of matrices and possess the sufficient descent property. Numerical experiments on a set of standard unconstrained optimization problems showed that the proposed method is superior to many well-known conjugate gradient methods in terms of efficiency and robustness.  相似文献   
83.
Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor–acceptor–donor–π–acceptor (D–A–D–π–A) configured novel designed compounds, namely, Q3D1–Q3D3, Q4D1–Q1D2, and Q5D1. We further analyze the structure–property relationship between the quinoline–carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1–Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3–Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (β) values of Q3D1–Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1–Q3D3, Q4D1–Q1D2, and Q5D1, may find their place in future hi-tech optical devices.  相似文献   
84.
A subgrid scale flame surface density combustion model for the Large Eddy Simulation (LES) of premixed combustion is derived and validated. The model is based on fractal characteristics of the flame surface, assuming a self similar wrinkling of the flame between smallest and largest wrinkling length scales. Experimental and direct numerical simulation databases as well as theoretical models are used to derive a model for the fractal parameters, namely the cut-off lengths and the fractal dimension suitable in the LES context. The combustion model is designed with the intent to simulate low as well as high Reynolds number premixed turbulent flame propagation and with a focus on correct scaling with pressure. The combustion model is validated by simulations of turbulent Bunsen flames with methane and propane fuel at pressure levels between 0.1 MPa and 2 MPa and at turbulence levels of $0 < u^{\prime }/s_{L}^{0} < 11$ , conditions typical for spark ignition engines. The predicted turbulent flame speed is in a very good agreement with the experimental data and a smooth transition from resolved flame wrinkling to fully modelled, nearly subgrid-only wrinkling is realized. Evaluating the influence of mesh resolution shows a predicted mean flame surface and turbulent flame speed independent of mesh resolution for cases with 9–86 % resolved flame surface. Additional simulations of a highly turbulent jet flame at 0.1 MPa and 0.5 MPa and the comparison with experimental data in terms of flame shape, velocity field and turbulent fluctuations validates the model also at conditions typical for gas turbines.  相似文献   
85.
Dielectric properties of porous glass nanocomposites with TGS crystals embedded into six porous matrices with average pore size from 5 to 312 nm were investigated in the temperature range from 280 to 380 K at selected frequencies. The results are discussed based on the effect of the particle size on the phase transition temperature of TGS nanocomposites. Temperature–size phase diagram of TGS composites was derived. Non-monotonic character of the temperature-driven phase transition (T p) with the decreasing particle size was determined. The nature of the T p variation can be ascribed to the size-effect theoretically predicted by Zhong et al. (Phys Rev B 50:698–703, 1994).  相似文献   
86.
Titanate sol–gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.  相似文献   
87.
The ab initio pseudopotential (PP) method within the generalized gradient approximation (GGA) has been used to investigate the electronic, elastic constants, and optical properties of zinc-blende GaN. An underestimated band gap along with higher DOS and squeezed energy bands around the fermi level is obtained. The d-band effect is briefly discussed for electronic band structure calculations. With the help of elastic constants, acoustic wave speeds are calculated in [100], [110], and [111] planes. The dielectric constant, refractive index, and its pressure coefficient are well illustrated. The effect of hydrostatic pressure is explicated for all these properties. The results of the present study are evaluated with the existing experimental and first-principle calculations.  相似文献   
88.
Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices. Thin films are reasonably hard and thermally stable but quite fragile. The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles. In the current work, a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account. The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work. The flow is affected by variations in the viscous forces, along with viscous dissipation effects and Marangoni convection. A time-constrained magnetic field is applied in the normal direction to the flow system. The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables. The homotopy analysis method is employed to find the solution to the resultant equations. It is noticed in this study that the flow characteristics decline with augmentation of magnetic, viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters. Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number. The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form. A comparison of current work with established results is carried out, with good agreement.  相似文献   
89.
In the current study simultaneous reactions of hydrodesulfurization(HDS) of dibenzothiophene(DBT) and reforming of methanol in a micro-autoclave reactor were studied over bi-metallic(Co-Mo/Al2O3 and Ni-Mo/Al2O3) and tri-metallic(Pd-Co-Mo/Al2O3 and Pd-Ni-Mo/Al2O3) catalyst systems which were prepared by incipient impregnation method.In situ hydrogen utilization and low Pd loadings were the major targets of this study.For comparison purpose,catalytic activity was separately determined for both the methanol reforming and HDS of DBT reactions as well.Ni based catalysts were confirmed with better activity than Co ones for both the reactions with Pd promoted ones ranking at the top i.e.Pd-Ni-Mo/Al2O3 > Ni-Mo/Al2O3 > Pd-Co-Mo/Al2O3 > Co-Mo/Al2O3 where Pd-Ni-Mo/Al2O3 showed 91% DBT conversion at 380 ℃ and 12 h reaction time.Some of the selected organic additives on catalytic activity were tested for their effect toward HDS reaction which was unique with close relation to their chemical nature.Reaction products were quantitatively and qualitatively analyzed via HPLC and GC-MS techniques respectively which helped in elucidating reaction mechanism.  相似文献   
90.
To study ion beam induced modifications into MOCVD grown wurtzite AlInN layers, neon ions were implanted on the samples with four doses ranging from 1014 to 9×1015 ions/cm29×1015 ions/cm2. Structural characterization was carried out by X-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques. XRD analysis revealed that GaN related peak for all samples remains at its usual Bragg position of 2θ=34.56°2θ=34.56° whereas a shift in AlInN peak takes place from its position of 2θ=35.51°2θ=35.51° for as-grown sample. Rutherford back scattering (RBS) analysis indicated that peak related to Ga atoms in capping layer provided evidence of partial sputtering of GaN cap layers. Moreover, Al peak position is shifted towards lower channel side and width of the signal is increased after implantation, which pointed to the inwards migration of Al atoms away from the AlInN surface. The results suggested that partial sputtering of cap layer has taken place without uncovering the underneath AlInN layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号