首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   7篇
  国内免费   4篇
化学   167篇
晶体学   4篇
力学   3篇
数学   9篇
物理学   52篇
  2024年   3篇
  2023年   4篇
  2022年   32篇
  2021年   20篇
  2020年   14篇
  2019年   11篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   12篇
  2012年   9篇
  2011年   15篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   8篇
  2003年   14篇
  2002年   26篇
  2001年   6篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
71.
Poly(N‐acryloyl‐N′‐ethyl piperazine‐co‐N‐isopropylacrylamide) hydrogels were prepared by thermal free‐radical copolymerization of N‐acryloyl‐N′‐ethyl piperazine (AcrNEP) and N‐isopropylacrylamide (NIPAM) in solution using N, N′‐methylene bisacrylamide as the crosslinking agent. The gels were responsive to changes in external stimuli such as pH and temperature. The pH and temperature responsive character of the gels was greatly dependent on the monomer content, namely AcrNEP and NIPAM, respectively. The gels swelled in acidic (pH 2) and de‐swelled in basic (pH 10) solutions with a response time of 60 min. With increase in temperature from 23 to 80 °C the swelling of the gels decreased continuously and this effect was different in acidic and basic solutions. The temperature dependence of equilibrium water content of the gels was evaluated by the Gibbs–Helmholtz equation. Detailed analysis of the swelling properties of these new gels in relation to molecular heterogeneity in acidic (pH 2) and basic (pH 10) solutions were performed. Water transport property of the gels was studied gravimetrically. In acidic solution, the diffusion process was non‐Fickian (anomalous) while in basic solution, the diffusion was quasi‐Fickian. The effect was more evident in solution of pH 2 than in pH 10. Various structural parameters of the gels such as number‐average molar mass between crosslink (Mc), the crosslink density (ρc), and the mesh size (ξ) were evaluated. The mesh sizes of the hydrogels were between 64 and 783 Å in the swollen state in acidic solution and 20 and 195 Å in the collapsed state in basic solution. The mesh size increased between three to four times during the pH‐dependent swelling process. The amount of unbound water (free water) and bound water of the gels was also evaluated using differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
72.
In this paper, we discuss the effects of detuning on the velocity selection for ultracold three-level atoms in Λ configuration using mazer action. We find sharp resonances in the transmission probability with respect to the detuning. Our results show that the velocity selection of ultracold atoms can easily be tuned and enhanced using off-resonant field in a bimodal cavity.  相似文献   
73.
Zabit U  Bernal OD  Bosch T  Bony F 《Optics letters》2011,36(5):612-614
A self-mixing (SM) laser displacement sensor coupled with a microelectromechanical system (MEMS) accelerometer is presented that enables reliable displacement measurements even in the case of a nonstationary laser head. The proposed technique allows the use of SM-based sensors for embedded applications. The system resolution is currently limited to approximately 300?nm due to the noise characteristics of the currently used accelerometer. It is shown that this resolution can be greatly improved by the use of a low noise accelerometer.  相似文献   
74.
In this study, an optimized mesoporous sulfonated carbon (OMSC) catalyst derived from palm kernel shell biomass was developed using template carbonization and subsequent sulfonation under different temperatures and time conditions. The OMSC catalyst was characterized using acid-base titration, elemental analysis, XRD, Raman, FTIR, XPS, TPD-NH3, TGA-DTA, SEM, and N2 adsorption–desorption analysis to reveal its properties. Results proved that the OMSC catalyst is mesoporous and amorphous in structure with improved textural, acidic, and thermal properties. Both FTIR and XPS confirmed the presence of -SO3H, -OH, and -COOH functional groups on the surface of the catalyst. The OMSC catalyst was found to be efficient in catalyzing glycerol conversion to acetin via an acetylation reaction with acetic acid within a short period of 3 h. Response surface methodology (RSM), based on a two-level, three-factor, face-centered central composite design, was used to optimize the reaction conditions. The results showed that the optimized temperature, glycerol-to-acetic acid mole ratio, and catalyst load were 126 °C, 1:10.4, and 0.45 g, respectively. Under these optimum conditions, 97% glycerol conversion (GC) and selectivities of 4.9, 27.8, and 66.5% monoacetin (MA), diacetin (DA), and triacetin (TA), respectively, were achieved and found to be close to the predicted values. Statistical analysis showed that the regression model, as well as the model terms, were significant with the predicted R2 in reasonable agreement with the adjusted R2 (<0.2). The OMSC catalyst maintained excellent performance in GC for the five reaction cycles. The selectivity to TA, the most valuable product, was not stable until the fourth cycle, attributable to the leaching of the acid sites.  相似文献   
75.
The electrochemical behavior of a biologically important heterocyclic compound, 1,3‐dioxolo[4,5‐g]pyrido[2,3‐b]quinoxaline was investigated by cyclic, square wave and differential pulse voltammetry in solutions of different pH. Kinetic and thermodynamic parameters like standard rate constant, diffusion coefficient, apparent energy of activation, standard Gibbs free energy and enthalpy and entropy changes were evaluated. Limits of detection and quantification were determined by square wave voltammetry. The redox mechanism of the compound was proposed on the basis of experimental results. Computational chemistry was used as a tool for the verification of experimental outcomes and assessment of different theoretical parameters  相似文献   
76.
Seawater intrusion (SWI) is the main threat to fresh groundwater (GW) resources in coastal regions worldwide. Early identification and delineation of such threats can help decision-makers plan for suitable management measures to protect water resources for coastal communities. This study assesses seawater intrusion (SWI) and GW salinization of the shallow and deep coastal aquifers in the Al-Qatif area, in the eastern region of Saudi Arabia. Field hydrogeological and hydrochemical investigations coupled with laboratory-based hydrochemical and isotopic analyses (18O and 2H) were used in this integrated study. Hydrochemical facies diagrams, ionic ratio diagrams, and spatial distribution maps of GW physical and chemical parameters (EC, TDS, Cl, Br), and seawater fraction (fsw) were generated to depict the lateral extent of SWI. Hydrochemical facies diagrams were mainly used for GW salinization source identification. The results show that the shallow GW is of brackish and saline types with EC, TDS, Cl, Br concentration, and an increasing fsw trend seaward, indicating more influence of SWI on shallow GW wells located close to the shoreline. On the contrary, deep GW shows low fsw and EC, TDS, Cl, and Br, indicating less influence of SWI on GW chemistry. Moreover, the shallow GW is enriched in 18O and 2H isotopes compared with the deep GW, which reveals mixing with recent water. In conclusion, the reduction in GW abstraction in the central part of the study area raised the average GW level by three meters. Therefore, to protect the deep GW from SWI and salinity pollution, it is recommended to implement such management practices in the entire region. In addition, continuous monitoring of deep GW is recommended to provide decision-makers with sufficient data to plan for the protection of coastal freshwater resources.  相似文献   
77.
Porphyrin‐based non‐fullerene acceptors (NFAs) have shown pronounced potential for assembling low‐bandgap materials with near‐infrared (NIR) characteristics. Herein, panchromatic‐type porphyrin‐based molecules (POR1–POR5) are proposed by modulating end‐capped acceptors of a highly efficient porphyrin‐based NFA PORTFIC(POR) for organic solar cells (OSCs). Quantum chemical structure‐property relationship has been studied to discover photovoltaic and optoelectronic characteristics of POR1–POR5. Results show that optoelectronic properties of the POR1–POR5 are better in all aspects when compared with the reference POR. All proposed NFAs particularly POR5 proved to be the preferable porphyrin‐based NIR sensitive NFA for OSCs applications owing to lower energy gap (1.56 eV), transition energy (1.11 eV), binding energy (Eb =0.986 eV), electron mobility (λe=0.007013Eh ), hole mobility (λh =0.004686 Eh), high λmax =1116.27 nm and open‐circuit voltage (Voc =1.96 V) values in contrast to the reference POR and other proposed NFAs. This quantum chemical insight provides sufficient evidence about excellent potential of the proposed porphyrin‐based NIR sensitive NFA derivatives for their use in OSCs.  相似文献   
78.
A topological index as a graph parameter was obtained mathematically from the graph’s topological structure. These indices are useful for measuring the various chemical characteristics of chemical compounds in the chemical graph theory. The number of atoms that surround an atom in the molecular structure of a chemical compound determines its valency. A significant number of valency-based molecular invariants have been proposed, which connect various physicochemical aspects of chemical compounds, such as vapour pressure, stability, elastic energy, and numerous others. Molecules are linked with numerical values in a molecular network, and topological indices are a term for these values. In theoretical chemistry, topological indices are frequently used to simulate the physicochemical characteristics of chemical molecules. Zagreb indices are commonly employed by mathematicians to determine the strain energy, melting point, boiling temperature, distortion, and stability of a chemical compound. The purpose of this study is to look at valency-based molecular invariants for SiO4 embedded in a silicate chain under various conditions. To obtain the outcomes, the approach of atom–bond partitioning according to atom valences was applied by using the application of spectral graph theory, and we obtained different tables of atom—bond partitions of SiO4. We obtained exact values of valency-based molecular invariants, notably the first Zagreb, the second Zagreb, the hyper-Zagreb, the modified Zagreb, the enhanced Zagreb, and the redefined Zagreb (first, second, and third). We also provide a graphical depiction of the results that explains the reliance of topological indices on the specified polynomial structure parameters.  相似文献   
79.
Tetrahydrocarbazol‐4‐one represents a prevalent framework of numerous natural products and pharmaceuticals. This review summaries the recent synthetic progresses of this core structure, including Fischer indolization, oxidative and reductive coupling, α‐arylative cyclization by means of transition‐ metal catalysis or under metal‐free conditions, and other methods. The recently emerged enantioselective catalytic methods of tetrahydrocarbazol‐4‐ ones are also described. The mechanistic insights and applications of these strategies as a key step in the total (formal) synthesis of complex alkaloids are highlighted as well.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号