首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   13篇
化学   249篇
晶体学   1篇
力学   1篇
物理学   86篇
  2021年   2篇
  2020年   3篇
  2019年   8篇
  2017年   2篇
  2016年   16篇
  2015年   10篇
  2014年   3篇
  2013年   14篇
  2012年   18篇
  2011年   15篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   11篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   3篇
  1999年   6篇
  1998年   12篇
  1997年   8篇
  1996年   10篇
  1995年   10篇
  1994年   16篇
  1993年   2篇
  1992年   10篇
  1991年   12篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1980年   3篇
  1979年   8篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1972年   3篇
  1971年   2篇
  1969年   4篇
  1961年   2篇
  1935年   2篇
  1932年   2篇
  1921年   2篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
61.
Selenocysteine (Sec or U) is encoded by UGA, a stop codon reassigned by a Sec‐specific elongation factor and a distinctive RNA structure. To discover possible code variations in extant organisms we analyzed 6.4 trillion base pairs of metagenomic sequences and 24 903 microbial genomes for tRNASec species. As expected, UGA is the predominant Sec codon in use. We also found tRNASec species that recognize the stop codons UAG and UAA, and ten sense codons. Selenoprotein synthesis programmed by UAG in Geodermatophilus and Blastococcus, and by the Cys codon UGU in Aeromonas salmonicida was confirmed by metabolic labeling with 75Se or mass spectrometry. Other tRNASec species with different anticodons enabled E. coli to synthesize active formate dehydrogenase H, a selenoenzyme. This illustrates the ease by which the genetic code may evolve new coding schemes, possibly aiding organisms to adapt to changing environments, and show the genetic code is much more flexible than previously thought.  相似文献   
62.
63.
The formation of four products of the type Me3C(Me3Si)N=BH–N(CMe3)=BR'2 [BR'2 = B(CHMeiPr)2 ( 1 ), B(c‐C6H11)2 ( 2 ), B(C8H14) ( 3 ), B(O2C6H4) ( 4 )] from the iminoborane Me3C(Me3Si)N–···B=···N(CMe3) and the hydroboranes (R'2BH)2 is described. Crystal structure analysis reveals the molecule 1 to have an N=B–N=B backbone with two orthogonal N=B bond planes and, hence, no conjugation between the two B–N double bonds.  相似文献   
64.
closo-Undecaborates were synthesized by the deprotonation of B11H13(SMe2) with LitBu in thp or K[BHEt3] in thf, [Li(thp)3]2[B11H11] and K2[B11H11] being obtained in 83 and 93% yield, respectively. K2[B11H11] can be transformed into A2[B11H11] with the corresponding ammonium chlorides in aqueous solution (A = [NMe3Ph], [NBzlEt3], [N(PPh3)2]). The crystal structure analysis of [Li(thp)3]2[B11H11] (space group P21/c) reveals a rather distorted octadecahedron for the [B11H11]2– anion, whereas the corresponding octadecahedron in [NBzlEt3]2[B11H11] (space group P212121) exhibits a structure close to C2v symmetry, expected for the free anion. The protonation of [B11H11]2– at low temperature gives [B11H12], whose structure could be elucidated by NMR methods; it is formed, apparently, by the opening of the B1–B4 edge of [B11H11]2– in the course of its known degenerate skeletal rearrangement, followed by the protonation of the B2–B4 edge. The reaction of [B11H12] with a second molecule of the acid HX (X = CF3COO) gives nido-[B11H13X]. The addition of BH3 to [B11H11]2– yields closo-[B12H12]2– under loss of H2. Two [B11H11]2– units are fused by the aid of FeCl3, with the known anion [B22H22]2– as the product, whose 11B-NMR signals could completely be assigned on the basis of Cs symmetry. The compound [NBzlEt3][N(PPh3)2][B22H22] crystallizes in the space group Pna21.  相似文献   
65.
Tri-O-methylcellulose was prepared from partially O-methylated cellulose and its chemical shifts (1H and 13C), and proton coupling constants were assigned using the following NMR methods: (1) One-dimensional 1H and 13C spectra of the title compound were used to assign functional groups and to compare with literature data; (2) double quantum filtered proton–proton correlation spectroscopy (1H, 1H DQF-COSY) was used to assign the chemical shifts of the network of 7 protons in the anhydroglucose portion of the repeat unit; (3) the heteronuclear single-quantum coherence (HSQC) spectrum was used to establish connectivities between the bonded protons and carbons; (4) the heteronuclear multiple-bond correlation (HMBC) spectrum was used to connect the hydrogens of the methyl ethers to their respective sugar carbons; (5) the combination of HSQC and HMBC spectra was used to assign the 13C shifts of the methyl ethers; (6) all spectra were used in combination to verify the assigned chemical shifts; (7) first-order proton coupling constants data (JH,H in Hz) were obtained from the resolution-enhanced proton spectra. The NMR spectra of tri-O-methylcellulose and other cellulose ethers do not resemble the spectra of similarly substituted cellobioses. Although the 1H and 13C shifts and coupling constants of 2,3,6-tri-O-methylcellulose closely resemble those of methyl tetra-O-methyl-β-D -glucoside, there are differences with regard to the chemical shifts and the order of appearances of the resonating nuclei of the methyl ether appendages and the proton at position 4 in the pyranose ring. H4 in tri-O-methylcellulose is deshielded by the acetal system comprising the β-1→4 linkage, and it resonates downfield. H4 in the permethylated glucoside is not as deshielded by the equitorial O-methyl group at C4, and it resonates upfield. The order of appearance of the 1H and 13C resonances in the spectra of the tri-O-methylcellulose repeat unit (from upfield to downfield) are H2 < H3 < H5 < H6a < H3a < H2a < pro R H6B < H4 < pro S H6A ≪ H1 and C6a < C3a < C2a < C6 < C5 < C4 < C2 < C3 ≪ C1, respectively. Close examination of the pyranose ring coupling constants of the repeat unit in tri-O-methylcellulose supports the 4C1 arrangement of the glucopyranose ring. Examination of the proton coupling constants about the C5-C6 bond (J5,6A and J5,6B) in the nuclear Overhauser effect difference spectra revealed that the C6 O-methyl group is predominantly in the gauche gauche conformation about the C5-C6 bond for the polymer in solution. © 1999 John Wiley & Sons, Inc.* J Polym Sci A: Polym Chem 37: 4019–4032, 1999  相似文献   
66.
We investigate the discrete chiral transformation of a Majorana fermion on a torus. Depending on the boundary conditions the integration measure can change sign. Taking this anomalous behavior into account we define a chiral order parameter as a ratio of partition functions with differing boundary conditions. Then the lattice realization of the Gross–Neveu model with Wilson fermions is simulated using the recent ‘worm’ technique on the loop gas or all-order hopping representation of the fermions. An algorithm is formulated that includes the Gross–Neveu interaction for N fermion species. The critical line mc(g) is constructed for a range of couplings at N=6 and for N=2, the Thirring model, as examples.  相似文献   
67.
The self-assembly of ω-ferrocenylalkanethiols (FcCnSH) with different alkyl-spacer lengths on Au(1 1 1) substrates has been studied by scanning tunneling microscopy (STM). Upon deposition at room temperature FcCnSH molecules tend to form multilayers, while by thermal treatment monolayer formation, a rearrangement of the molecules and the formation of ordered domains is achieved. The surface structure of the resulting full coverage self-assembled monolayers is resolved with molecular resolution by STM. The ordered monolayer structure of ω-ferrocenylpropanethiol is discussed in comparison with its bulk crystal structure, derived from single crystal X-ray analysis. Based on these results a monolayer structure of ω-ferrocenylalkanethiols with longer alkyl chains closely related to the bulk crystal structure of the shorter alkyl-spacer derivates is suggested. Our results provide detailed insight into the self-assembly of FcCnSH on gold substrates.  相似文献   
68.
A general route is shown to calculate the entropy production sigma as function of time t in a closed system during reversible polymerization. We treat the polymer molecules to behave nonideal and apply exemplarily the classical Flory-Huggins theory to get explicit expressions for the activity coefficient. At the beginning of the polymerization the system is in a nonequilibrium state where chemical reactions take place that irreversibly drive the system towards equilibrium with sigma approaching zero in the limit t-->infinity. The time-dependent course of the entropy production is explicitly calculated for two cases where the reaction starts (i) from monomer molecules polymerizing to a defined number average chain length xn,eq and (ii) from monodisperse polymer molecules reacting with each other under the constrain that xn is the same at the beginning and the end of the reaction. In both cases we find that the nature of the activity coefficient has an important effect on the curvature of sigma which may considerably differ from that of an ideal behavior.  相似文献   
69.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}diphenyltin(IV) complexes have been synthesized and characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The structures of a ligand L6H (i.e., 5-[(E)-2-(4-ethoxyphenyl)-1-diazenyl]quinolin-8-ol) and three diphenyltin(IV) complexes, viz., Ph2Sn(L1)2 · (CH3)2CO (1), Ph2Sn(L4)2 (4) and Ph2Sn(L5)2 (5) (L = 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol: aryl = phenyl - (L1H); 4′-methylphenyl - (L4H) and 4′-bromophenyl - (L5H)) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn NMR spectroscopic results. The in vitro cytotoxicity of 1 is reported and compared with Ph2Sn(Ox)2 (Ox = deprotonated quinolin-8-ol) against seven well characterized human tumor cell lines.  相似文献   
70.
New diphosphinite ligands based on atropoisomeric diol backbones and (R,R)-2,5-dimethylphospholane moieties have been prepared and fully characterised. For each ligand structure, both diastereomers have been synthesised. These ligands are available through a straightforward procedure in good yields. The solid state structures of two diastereomeric ligands are reported. These ligands have been applied to Rh-catalysed asymmetric hydrogenations and hydroformylations of CC bonds as well as in Ir-catalysed asymmetric hydrogenations of CN bonds. Turnover frequencies in the range of 10,000 h?1 and enantioselectivities of up to 98% ee have been achieved. The different chirality elements within the ligands led to marked cooperative effect in catalysis. Interestingly, there is no general privileged diastereomeric structure but rather a matched diastereomer for each application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号