首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1670篇
  免费   68篇
  国内免费   6篇
化学   1381篇
晶体学   31篇
力学   13篇
数学   155篇
物理学   164篇
  2023年   21篇
  2022年   26篇
  2021年   40篇
  2020年   40篇
  2019年   28篇
  2018年   30篇
  2017年   26篇
  2016年   53篇
  2015年   65篇
  2014年   75篇
  2013年   96篇
  2012年   108篇
  2011年   106篇
  2010年   62篇
  2009年   61篇
  2008年   99篇
  2007年   106篇
  2006年   91篇
  2005年   82篇
  2004年   59篇
  2003年   49篇
  2002年   59篇
  2001年   16篇
  2000年   31篇
  1999年   19篇
  1998年   22篇
  1997年   15篇
  1996年   11篇
  1995年   20篇
  1994年   14篇
  1993年   12篇
  1992年   12篇
  1991年   13篇
  1990年   10篇
  1989年   15篇
  1988年   9篇
  1987年   10篇
  1986年   7篇
  1985年   11篇
  1984年   16篇
  1983年   15篇
  1982年   5篇
  1981年   12篇
  1980年   12篇
  1979年   8篇
  1978年   4篇
  1977年   8篇
  1976年   9篇
  1975年   5篇
  1973年   5篇
排序方式: 共有1744条查询结果,搜索用时 15 毫秒
991.
Naturally occurring long-chain ceramides (Cer) are known to alter the lateral organization of biological membranes. In particular, they produce alterations of microdomains that are involved in several cellular processes, ranging from apoptosis to immune response. In order to induce similar biological effects, short-chain Cer are extensively used in in vivo experiments to replace their long-chain analogues. In this work, we used the combined approach of atomic force microscopy (AFM) and fluorescence correlation spectroscopy (FCS) to investigate the effect of Cer chain length in lipid bilayers composed of sphingomyelin, dioleoyl-phosphatidylcholine, and cholesterol. Our results show that only long-chain Cer, like C18 and C16, are able to segregate from the liquid-ordered phase, forming separate Cer-enriched domains. Conversely, short-chain Cer do not form a separate phase but alter the physical properties of the liquid-ordered domains, decreasing their stability and viscosity and perturbing the lipid packing. These differences may contribute to the explanation of the different physiological effects that are often observed for the long- and short-chain Cer.  相似文献   
992.
993.
Racemization is the key step to turn a kinetic resolution process into dynamic resolution. A general strategy for racemization under mild reaction conditions by employing stereoselective biocatalysts is presented, in which racemization is achieved by employing a pair of stereocomplementary biocatalysts that reversibly interconvert an sp3 to a sp2 center. The formal interconversion of the enantiomers proceeds via a prochiral sp2 intermediate the formation of which is catalyzed either by two stereocomplementary enzymes or by a single enzyme with low stereoselectivity. By choosing appropriate reaction conditions, the amount of the prochiral intermediate is kept to a minimum. This general strategy, which is applicable to redox enzymes (e.g., by acting on R2CHOH and R2CHNHR groups) and lyase-catalyzed addition-elimination reactions, was proven for the racemization of secondary alcohols by employing alcohol dehydrogenases. Thus, enantiopure chiral alcohols were used as model substrates and were racemized either with highly stereoselective biocatalysts or by using (rarely found) non-selective enzymes.  相似文献   
994.
Organometallic Compounds of Copper. XVIII. On the Reaction of the Alkyne Copper(I) Complexes [CuX(S‐Alkyne)] (X = Cl, Br, I; S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne) with the Phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) The alkyne copper(I) halide complexes [CuX(S‐Alkyne)]n ( 2 ) ( 2 a : X = Cl, 2 b : X = Br, 2 c : X = I; S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; n = 2, ∞) add the phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) to form the mono‐ and dinuclear copper compounds [(S‐Alkyne)CuX(PMe3)] ( 6 ) ( 6 a : X = Cl, 6 b : X = Br) and [(S‐Alkyne)CuX(μ‐dppe)CuX(S‐Alkyne)] ( 7 a : X = Cl, 7 b : X = Br, 7 c : X = I), respectively. By‐product in the reaction of 2 a with dppe is the tetranuclear complex [(S‐Alkyne)Cu(μ‐X)2Cu(μ‐dppe)2Cu(μ‐X)2Cu(S‐Alkyne)] ( 8 ). In case of the compounds 7 prolonged reaction times yield the alkyne‐free dinuclear copper complexes [Cu2X2(dppe)3] ( 9 ) ( 9 a : X = Cl, 9 b : X = Br, 9 c : X = I)). X‐ray diffraction studies were carried out with the new compounds 6 a , 6 b , 7 b , 8 , and 9 c .  相似文献   
995.
The reaction of Rb2S3, Ta and S in a 1.3 : 1 : 5.6 molar ratio at 400 °C yields red‐orange crystals of the new ternary compound Rb6Ta4S22 being the first tantalum polysulfide containing the dimeric complex anion [Ta4S22]6–. The polysulfide anions are composed of two Ta2S11 subunits which are linked to Ta4S22 units via terminal sulfur ligands. The Ta5+ centers are coordinated by S22– and S2– ligands according to [(Ta22‐η21‐S2)32‐S2)(S)2)22‐η11‐S2)]6–. Every Ta5+ ion is surrounded by seven sulfur ions forming a strongly distorted pentagonal bipyramid. In the crystal structure the discrete [Ta4S22]6– anions are stacked parallel to the crystallographic b‐axis. The Rb+ cations are located between these stacks. Rb6Ta4S22 crystallizes in the monoclinic space group P21/c (No. 14) with a = 11.8253(9) Å, b = 7.9665(4) Å, c = 19.174(2) Å, β = 104.215(9)°, V = 1751.0(2) Å3, Z = 2.  相似文献   
996.
By on-line addition of a central atom (for example, AgI, BIII, PdII, LiI) positively or negatively charged complexes of analytes can be formed for CIS-MS. This technique is applicable to both polar and nonpolar compounds—for example, for alcohols, ethers, and a large number of olefins, polyolefins, and arenes as well as steroids, vitamins of the D and E families, carotinoids, polystyrols, terpenes, and unsaturated fatty acids—and can be readily coupled with separation techniques.  相似文献   
997.
Oxalato‐ and Squarato‐Bridged Threedimensional Networks: The Crystal Structures of La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O and K[Bi(C2O4)2] · 5 H2O The title compounds have been formed by hydrolysis of amino‐ and thioderivatives of squaric acid in the presence of LaIII and BiIII ions. Both compounds are threedimensional coordination polymers in the solid state, as shown by single crystal X‐ray crystallography. In La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O oxalato‐bridged pairs of LaO9 polyhedra are connected with identical neighbouring polyhedra by squarate ions. In K[Bi(C2O4)2] · 5 H2O each Bi atom is fourfold linked to other Bi atoms by the oxalate ions. The resulting 3D network shows a diamond‐like topology with square‐shaped channels. In both structures the channels are partially filled by water molecules.  相似文献   
998.
999.
Rapeseed meal (RSM), a by-product of oilseed extraction connected to the agri-food and biofuel sectors, is currently used as animal feed and for other low-value purposes. With a biorefinery approach, RSM could be valorized as a source of bio-based molecules for high-value applications. This study provides a chemical characterization of RSM in the perspective of its valorization. A qualitative study of main functional groups by fourier transform infrared (FTIR) spectroscopy was integrated with a chemical characterization of macronutrients, minerals by inductively coupled plasma optical emission spectrometry (ICP-OES), phenolic acids and lipid components by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), HPLC-diode-array detector (HPLC-DAD) and gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID). The study, conducted on different lots of RSM collected over a one-year period from an oil pressing factory serving a biofuel biorefinery, highlighted a constant quality over time of RSM, characterized by high protein (31–34%), fiber (33–40%) and mineral (5.5–6.8%) contents. Polyphenol extracts showed a significant antioxidant activity and a prevalence of sinapic acid, accounting for more than 85% of total phenolic acids (395–437 mg kg−1 RSM). Results highlight the potentialities of RSM for further valorization strategies that may lead to the creation of new cross-sector interconnections and bio-based value chains with improvement of the economics and sustainability of the bioeconomy sectors involved.  相似文献   
1000.
Organometallic Compounds of Copper. XX On the Reaction of the Alkyne Copper(I) Complexes [CuCl(S‐Alkyne)] and [Cu2Br2(S‐Alkyne)(dms)] (S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne; dms = Dimethylsulfide) with the Lithiumorganyls Phenyllithium und Fluorenyllithium The alkyne copper(I) bromide complex [Cu2Br2(S‐Alkyne)(dms)] ( 3 b ) (S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; dms = dimethylsulfide) reacts with phenyllithium to form a tetranuclear copper(I) complex of the composition [Cu4(C6H5)2(S‐Alkenyl)2] ( 7 ) in low yield (4%). The reaction of the alkyne copper(I) chloride complex [CuCl(S‐Alkyne)] ( 2 a ) with fluorenyllithium in tetrahydrofuran (thf) affords a lithium cuprate of the composition [Li(thf)4]+ [Cu2(fluorenyl)3(S‐Alkyne)2] ( 8 ) (yield 32%). The structures of both new complexes 7 and 8 were determined by X–ray diffraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号