首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
化学   20篇
数学   1篇
物理学   9篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1982年   3篇
  1976年   1篇
排序方式: 共有30条查询结果,搜索用时 62 毫秒
11.
12.
Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order M?ller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H(2)O, three diatomics, and the O(4)(+) molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H(2)O and diatomics; however, in symmetry-breaking problems as exemplified by O(4)(+), the OD method provides better results for vibrational frequencies. The OD method has further advantages over CCSD: its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that are somewhat different than those of MP2 for most of the test cases considered (although they are similar for H(2)O). Bond lengths are somewhat longer, and vibrational frequencies somewhat smaller, for OMP2 compared to MP2. In the difficult case of O(4)(+), results for several vibrational frequencies are significantly improved in going from MP2 to OMP2.  相似文献   
13.
Does GaH5 exist?     
The existence or nonexistence of GaH(5) has been widely discussed [N. M. Mitzel, Angew. Chem. Int. Ed. 42, 3856 (2003)]. Seven possible structures for gallium pentahydride have been systematically investigated using ab initio electronic structure theory. Structures and vibrational frequencies have been determined employing self-consistent field, coupled cluster including all single and double excitations (CCSD), and CCSD with perturbative triples levels of theory, with at least three correlation-consistent polarized-valence-(cc-pVXZ and aug-cc-pVXZ) type basis sets. The X (1)A(') state for GaH(5) is predicted to be weakly bound complex 1 between gallane and molecular hydrogen, with C(s) symmetry. The dissociation energy corresponding to GaH(5)-->GaH(3)+H(2) is predicted to be D(e)=2.05 kcal mol(-1). The H-H stretching fundamental is predicted to be v=4060 cm(-1), compared to the tentatively assigned experimental feature of Wang and Andrews [J. Phys. Chem. A 107, 11371 (2003)] at 4087 cm(-1). A second C(s) structure 2 with nearly equal energy is predicted to be a transition state, corresponding to a 90 degrees rotation of the H(2) bond. Thus the rotation of the hydrogen molecule is essentially free. However, hydrogen scrambling through the C(2v) structure 3 seems unlikely, as the activation barrier for scrambling is at least 30 kcal mol(-1) higher in energy than that for the dissociation of GaH(5) to GaH(3) and H(2). Two additional structures consisting of GaH(3) with a dihydrogen bond perpendicular to gallane (C(3v) structure 4) and an in-plane dihydrogen bond [C(s)(III) structure 5] were also examined. A C(3v) symmetry second-order saddle point has nearly the same energy as the GaH(3)+H(2) dissociation limit, while the C(s)(III) structure 5 is a transition structure to the C(3v) structure. The C(4v) structure 6 and the D(3h) structure 7 are much higher in energy than GaH(3)+H(2) by 88 and 103 kcal mol(-1), respectively.  相似文献   
14.
15.
16.
We studied in this work a three-monomer reaction model on one- and two-dimensional lattices. We have taken different reactivity rates among pairs of monomers and the reaction between two selected monomers was forbidden. We have employed the mean field and the pair approximation to decouple the equations of motion for the densities of single and pairs of monomers. We found the stationary states and the phase diagram of the model. We have shown that, in two dimensions and within the pair approximation, there is a first-order transition line between active and poisoned steady states.  相似文献   
17.
Ammala  A.  Hill  A.J.  Meakin  P.  Pas  S.J.  Turney  T.W. 《Journal of nanoparticle research》2002,4(1-2):167-174
Coated and dispersed nanoparticulate zinc oxide is shown to improve ultra violet (UV) stability of polypropylene and high-density polyethylene without changing its characteristic absorption spectrum in the visible region (400–800-nm). The performance of these nanoparticulate UV stabilizers is compared to conventional hindered amine light stabilizers (HALS). QUV accelerated weathering is used to simulate long-term exposure. Positron annihilation lifetime spectroscopy (PALS) is used to provide an indication of physical and chemical changes due to accelerated weathering and is shown to have potential for detecting changes well before other techniques. Visual observation, optical microscopy, carbonyl index, yellowness index and PALS indicate that nanoparticulate zinc oxide gives superior resistance to UV degradation compared to organic HALS at appropriate loading levels.  相似文献   
18.
Nanocomposites of sodium smectite with polyether‐ and polystyrene‐containing pendant cyclic carbonates offer a novel approach to improving hydraulic barrier properties of Na‐smectite liners to saline leachates. The cyclic carbonate polyethers were prepared by cationic ring opening polymerization of a cyclic carbonate‐containing epoxide, whilst polystyrene polymers having pendant cyclic carbonate groups were obtained from radical photopolymerization of styrene. Na‐smectite nanocomposites of these polymers were formed via clay in situ polymerization and solution intercalation methods. X‐ray diffraction (XRD) and FT‐IR analysis confirmed that the polyether can be intercalated within the layers of smectite via in situ as well as solution intercalation of the pre‐formed polymer. The cyclic carbonate polyether nanocomposite was more resistant to leaching in 3M aqueous sodium chloride than its respective cyclic carbonate. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2421–2429  相似文献   
19.
Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.  相似文献   
20.
Spectroscopic studies of the adsorption of dimethyl sulfoxide, (CH3)2S = O, on Pt(111) have shown that the molecule is bound to the surface via the sulfur atom in an inverted pyramid configuration. A comparison of XPS and EELS data for the adsorbed multilayer and monolayer with XPS and infrared data on the complex PtCl2(DMSO)2 is consistent with sulfur bonding. In addition, we detect a considerable increase of the v(S=O) frequency in the DMSO monolayer with decreasing coverage, indicating a coverage dependent heat of adsorption. UPS data show that on adsorption to form a monolayer, the highest occupied molecular orbital of DMSO, presumably the sulfur “lone pair” orbital, shifts to a higher binding energy. These results show a remarkable similarity between DMSO bonding to a metal surface and bonding to a single Pt2+ species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号