Phenolic compounds, such as caffeic acid, trans-ferulic, acid and p-coumaric acid that are commonly found in food products, are beneficial for human health. Cyclodextrins can form inclusion complexes with various organic compounds in which the physiochemical properties of the included organic molecules are changed. In this study, inclusion complexes of three phenolic compounds with β-cyclodextrin were investigated. The complexes were characterized by various analytical methods, including nuclear magnetic resonance (NMR) spectroscopy, Fourier IR (FT-IR) spectroscopy, mass spectrometry, differential scanning calorimetry, and scanning electron microscopy. Results showed that the phenolic compounds used in this study were able to form inclusion complexes in the hydrophobic cavity of β-cyclodextrin by non-covalent bonds. Their physicochemical properties were changed due to the complex formation. In addition, a computational study was performed to find factors that were responsible for binding forces between flavors and β-cyclodextrin. The quantum-mechanical calculations supported the results obtained from experimental studies. Thus, ΔHf for the complex of p-coumaric acid and β-cyclodextrin has been found as ??11.72 kcal/mol, which was about 3 kcal/mol more stable than for inclusion complexes of other flavors. Energies of frontier orbitals (higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO)) were analyzed, and it was found that H-L gap for the complex of p-coumaric acid and β-cyclodextrin had the largest value (8.19 eV) in comparison to other complexes, which confirmed the experimental findings of the most stabile complex.
Steroidal 17-hydroxamic acid derivatives were synthesized in high yields in palladium-catalysed carbonylation reaction of 17-iodo-androst-16-ene derivatives under mild reaction conditions. 相似文献
In this Study, Cadmium Oxide (CdO) nanostructures were synthesized by using Chemical Bath Deposition Technique. The synthesized process was carried out at room temperature. The structural and optical properties of nanostructures was characterized by XRD, SEM and UV-Vis techniques. As a result, the CdO nanostructures are oriented along (111) plane of cubic crystal structure. The morphology of CdO nanostructures showed interconnected prism-like and cauliflower-type cluster nanostructure. The UV results of this structures with high absorbtion coefficient are observed to be in accordance with the CdO nanoparticles. 相似文献
In the present study, spiro (1a), dispiro (1b, 2, 3), per-substituted spermine-bridged (6–9) and dispiroansa spermine (10) derivatives of cyclotriphosphazene have been synthesized. The structures of the novel compounds (1b, 6–10) have been characterized by elemental analysis, FTIR, mass spectrometry, 1H and 31P NMR spectroscopy. The molecular structures of 1b, 2, 8, and 10 were determined by single crystal X-ray crystallography. In order to investigate the anti-tumour properties of the newly synthesized cyclotriphosphazene derivatives, in vitro cytotoxic activity test (MTT assay) has been performed using HT-29 (human colon adenocarcinoma) and Hep2 (human epidermoid larynx carcinoma) cell lines. The result of the MTT assay showed that while compound 1a has cytotoxic effect on both Hep2 and HT-29 cell lines, compound 3 has only cytotoxic effect towards the Hep 2 cells. 相似文献
The present study aimed to assess metabolites heterogeneity among four major Cinnamomum species, including true cinnamon (Cinnamomum verum) and less explored species (C. cassia, C. iners, and C. tamala). UPLC-MS led to the annotation of 74 secondary metabolites belonging to different classes, including phenolic acids, tannins, flavonoids, and lignans. A new proanthocyanidin was identified for the first time in C. tamala, along with several glycosylated flavonoid and dicarboxylic fatty acids reported for the first time in cinnamon. Multivariate data analyses revealed, for cinnamates, an abundance in C. verum versus procyandins, dihydro-coumaroylglycosides, and coumarin in C. cassia. A total of 51 primary metabolites were detected using GC-MS analysis encompassing different classes, viz. sugars, fatty acids, and sugar alcohols, with true cinnamon from Malaysia suggested as a good sugar source for diabetic patients. Glycerol in C. tamala, erythritol in C. iners, and glucose and fructose in C. verum from Malaysia were major metabolites contributing to the discrimination among species. 相似文献
In this study, magnetic O-carboxymethyl chitosan (MOCC) nanocomposite was synthesized and characterized as a drug delivery system for loading the anticancer drug irinotecan (CPT-11). To increase the drug loading capacity, MOCC was synthesized by linking the carboxyl group functionally to chitosan. Also, several critical factors such as concentration, the dose of MOCC, and contact time for optimum drug loading condition were investigated. The loading capacity of CPT-11 onto MOCC was calculated as 5.6 mg/g, and the loaded drug concentration was calculated as 0.04787 mM at pH value of 5. Besides, the cytotoxic properties of MOCC, CPT- 11 loaded MOCC (MOCC-CPT-11), and free CPT-11 were studied on glioblastoma multiforme cell lines, including U87 and U373. According to the results, the MOCC-CPT-11 showed at least as toxic effect as free CPT-11 even at very low concentrations, while the MOCC showed slight toxicity (cell viability of 96% to 78%) on U373 cell lines at all concentrations and for 24 h and 48 h incubation times. Moreover, the results showed that the MOCC indicated significant toxicity in increasing concentrations and incubation times, and the MOCC-CPT-11 is as toxic as free CPT-11 on U87 cells at all concentrations and incubation times. 相似文献
In this study, the influence of the film structure was investigated on the electrocatalytic oxygen reduction at GC electrodes covered with porphyrin and metalloporphyrin rings via the diazonium modification method. For that purpose, primarily, tetraphenylporphyrin (TPP) films on GC electrode surfaces were prepared by electroreduction of in situ generated diazonium salts of 5‐(4‐aminophenyl)‐10,15,20‐triphenylporphyrin (APP) and 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin (TAPP) molecules. Next, the formation of metalloporphyrin films on the modified surfaces was accomplished through the complexation reactions of surface porphyrin rings with metal ions in the salt solutions containing Mn(II), Fe(III) and Co(II) ions. The resulting porphyrin and metalloporphyrin layers were identified with XPS and ICP‐MS. The electrochemical barrier properties of the films on GC surfaces were examined by cyclic voltammetry in K3Fe(CN)6 aqueous solution. The electrocatalytic abilities of the resulting films were also investigated for the oxygen electrochemical reduction by employing cyclic voltammetry in PBS solutions saturated with oxygen. The results showed that the oxygen reduction potentials on modified GC electrodes were shifted to less negative potentials compared to that of bare GC electrode. Also, it was obtained that the oxygen reduction reaction was more effective on the GC electrodes modified with TPP rings by using TAPP molecules than those prepared by using APP molecules. 相似文献
Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability. 相似文献