首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2288篇
  免费   236篇
  国内免费   193篇
化学   1714篇
晶体学   29篇
力学   97篇
综合类   12篇
数学   219篇
物理学   646篇
  2024年   3篇
  2023年   40篇
  2022年   70篇
  2021年   72篇
  2020年   77篇
  2019年   96篇
  2018年   69篇
  2017年   54篇
  2016年   91篇
  2015年   86篇
  2014年   111篇
  2013年   151篇
  2012年   179篇
  2011年   199篇
  2010年   126篇
  2009年   108篇
  2008年   142篇
  2007年   135篇
  2006年   118篇
  2005年   116篇
  2004年   68篇
  2003年   54篇
  2002年   77篇
  2001年   48篇
  2000年   35篇
  1999年   33篇
  1998年   30篇
  1997年   30篇
  1996年   32篇
  1995年   32篇
  1994年   23篇
  1993年   18篇
  1992年   30篇
  1991年   13篇
  1990年   23篇
  1989年   17篇
  1988年   15篇
  1987年   15篇
  1986年   8篇
  1985年   13篇
  1984年   14篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1975年   3篇
  1961年   1篇
  1954年   1篇
排序方式: 共有2717条查询结果,搜索用时 10 毫秒
71.
A simple solvent ligation effect was successfully used to disrupt the growth of a model compound, Fe[(OH)(O3P(CH2)2CO2H)]⋅H2O (MIL-37), into an extended 2D structure by replacing water with dimethylformamide (DMF) as the solvent during the synthesis. Owing to the lack of −OH group, which provides the corner-sharing (binding) oxygen atoms for the octahedra, an amorphous and porous structure is formed. When Fe3+ is partially replaced by Ni2+, the amorphous structure remains and the resultant binary metal catalyst displays excellent photocatalytic oxygen evolution activity with almost 100 % yield achieved under visible light irradiation using [Ru(bpy)3]2+ as the photosensitizer. This study opens up new possibilities of using the simple solvent effect to synthesize high surface area metal phosphonates for catalytic and other applications.  相似文献   
72.
段博  涂虎  张俐娜 《高分子学报》2020,(1):66-86,I0003
21世纪"绿色"化学已成为世界各国社会经济发展中的研究与开发战略方向.纤维素是自然界中储量最丰富的天然高分子,是重要的可再生资源以及未来的主要工业原料.然而由于纤维素存在着大量的分子内以及分子间氢键,其结构致密,难以溶解或熔融进一步加工.本文简要介绍了近几年来关于直接使用物理溶剂方法(非衍生化)对纤维素材料开发利用的新进展,主要包括以下4个方面:(1)纤维素在"绿色"溶剂-碱/尿素以及离子液体体系中的溶解和再生;(2)纳米纤维素的制备以及组装;(3)木材纳米技术的开发及利用;(4)细菌纤维素基材料等,旨在推进"绿色"技术实现纤维素资源的研究开发及利用.  相似文献   
73.
研究了1,4-烯炔衍生物与二芳基膦氧化物在银介导下发生的炔酰化反应.该反应利用自由基引发的1,2-炔基迁移策略合成了一系列γ-酮膦氧化物,产率适中.该反应机理可能涉及膦中心自由基与乙烯基的加成、3-exo-dig环化和1,2-炔基迁移等连续的过程,一步形成了C-P、C-C键等化学键,实现了非活性烯烃的双官能化.  相似文献   
74.
High-perfo rmance anodes of sodium ion batteries(SIBs)largely depends on rational architecture design and binder-free smart hybridization.Herein,we report TiC/C core/shell nanowires arrays prepared by a one-step chemical vapor deposition(CVD)method and apply it as the anode of SIBs for the first time.The conductive TiC core is intimately decorated with carbon shell.The as-obtained TiC/C nanowires are homogeneously grown on the substrate and show core/shell heterostructure and porous architecture with high electronic conductivity and reinforced stability.Owing to these merits,the TiC/C electrode displays good rate performance and outstanding cycling performance with a capacity of 135.3 mAh/g at 0.1 A/g and superior capacity retention of 90.14%after 1000 cycles at 2 A/g.The reported strategy would provide a promising way to construct binder-free arrays electrodes for sodium ion storage.  相似文献   
75.
A simple solvent ligation effect was successfully used to disrupt the growth of a model compound, Fe[(OH)(O3P(CH2)2CO2H)]?H2O (MIL‐37), into an extended 2D structure by replacing water with dimethylformamide (DMF) as the solvent during the synthesis. Owing to the lack of ?OH group, which provides the corner‐sharing (binding) oxygen atoms for the octahedra, an amorphous and porous structure is formed. When Fe3+ is partially replaced by Ni2+, the amorphous structure remains and the resultant binary metal catalyst displays excellent photocatalytic oxygen evolution activity with almost 100 % yield achieved under visible light irradiation using [Ru(bpy)3]2+ as the photosensitizer. This study opens up new possibilities of using the simple solvent effect to synthesize high surface area metal phosphonates for catalytic and other applications.  相似文献   
76.
Ascorbic acid (AA) is one of the essential nutrients in bee pollen, however, it is unstable and likely to be oxidized. Generally, the oxidation form (dehydroascorbic acid (DHA)) is considered to have equivalent biological activity as the reduction form. Thus, determination of the total content of AA and DHA would be more accurate for the nutritional analysis of bee pollen. Here we present a simple, sensitive, and reliable method for the determination of AA, total ascorbic acids (TAA), and DHA in rape (Brassica campestris), lotus (Nelumbo nucifera), and camellia (Camellia japonica) bee pollen, which is based on ultrasonic extraction in metaphosphoric acid solution, and analysis using hydrophilic interaction liquid chromatography (HILIC)-ultraviolet detection. Analytical performance of the method was evaluated and validated, then the proposed method was successfully applied in twenty-one bee pollen samples. Results indicated that contents of AA were in the range of 17.54 to 94.01 µg/g, 66.01 to 111.66 µg/g, and 90.04 to 313.02 µg/g for rape, lotus, and camellia bee pollen, respectively. In addition, percentages of DHA in TAA showed good intra-species consistency, with values of 13.7%, 16.5%, and 7.6% in rape, lotus, and camellia bee pollen, respectively. This is the first report on the discriminative determination between AA and DHA in bee pollen matrices. The proposed method would be valuable for the nutritional analysis of bee pollen.  相似文献   
77.
Herein, we report the development of an 18F‐labeled, activity‐based small‐molecule probe targeting the cancer‐associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18F radionuclide incorporation required for PET imaging. The resulting molecule, [18F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000‐fold selectivity relative to other serine hydrolases. [18F]JW199 displays rapid, NCEH1‐dependent accumulation in mouse tissues. Finally, we demonstrate that [18F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple‐negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.  相似文献   
78.
Organic semiconductor (OSC) crystals have great potential to be applied in many fields, as they can be flexibly designed according to the demands and show an outstanding device performance. However, OSCs with the capacity of solid-state crystallization (SSC) are developing too slowly to meet demands in productions and applications, due to their difficulties in molecular design and synthesis, unclear mechanism and high dependence on experimental conditions. In this work, in order to solve the problems, we synthesized an organic semiconductor capable of SSC at room temperature by adjusting the relationship between conjugated groups and functional groups. The thermodynamic and kinetic properties have been studied to discover the model of film SSC. Moreover, it can be purposefully controlled to prepare the high-quality crystals, and their corresponding organic electronic devices were further fabricated and discussed.  相似文献   
79.
Huntington’s disease (HD) is a rare single-gene neurodegenerative disease, which can only be treated symptomatically. Currently, there are no approved drugs for HD on the market. Studies have found that MAPK11 can serve as a potential therapeutic target for HD. Regrettably, no MAPK11 small molecule inhibitors have been approved at present. This paper presents three series of compounds that were designed and synthesized based on the structure of skepinone-L, a known MAPK14 inhibitor. Among the synthesized compounds, 13a and 13b, with IC50 values of 6.40 nM and 4.20 nM, respectively, displayed the best inhibitory activities against MAPK11. Furthermore, the structure–activity relationship (SAR) is discussed in detail, which is constructive in optimizing the MAPK11 inhibitors for better activity and effect against HD.  相似文献   
80.
The application of chitosan (CS) and whey protein (WP) alone or in combination in 3D/4D printing has been well considered in previous studies. Although several excellent reviews on additive manufacturing discussed the properties and biomedical applications of CS and WP, there is a lack of a systemic review about CS and WP bio-inks for 3D/4D printing applications. Easily modified bio-ink with optimal printability is a key for additive manufacturing. CS, WP, and WP–CS complex hydrogel possess great potential in making bio-ink that can be broadly used for future 3D/4D printing, because CS is a functional polysaccharide with good biodegradability, biocompatibility, non-immunogenicity, and non-carcinogenicity, while CS–WP complex hydrogel has better printability and drug-delivery effectivity than WP hydrogel. The review summarizes the current advances of bio-ink preparation employing CS and/or WP to satisfy the requirements of 3D/4D printing and post-treatment of materials. The applications of CS/WP bio-ink mainly focus on 3D food printing with a few applications in cosmetics. The review also highlights the trends of CS/WP bio-inks as potential candidates in 4D printing. Some promising strategies for developing novel bio-inks based on CS and/or WP are introduced, aiming to provide new insights into the value-added development and commercial CS and WP utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号