全文获取类型
收费全文 | 165篇 |
免费 | 1篇 |
国内免费 | 3篇 |
专业分类
化学 | 55篇 |
力学 | 5篇 |
数学 | 56篇 |
物理学 | 53篇 |
出版年
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 4篇 |
2017年 | 2篇 |
2016年 | 7篇 |
2015年 | 6篇 |
2014年 | 7篇 |
2013年 | 2篇 |
2012年 | 7篇 |
2011年 | 15篇 |
2010年 | 10篇 |
2009年 | 5篇 |
2008年 | 14篇 |
2007年 | 9篇 |
2006年 | 12篇 |
2005年 | 5篇 |
2004年 | 6篇 |
2003年 | 9篇 |
2002年 | 6篇 |
2001年 | 5篇 |
2000年 | 1篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有169条查询结果,搜索用时 15 毫秒
51.
Yoav D. Livney Irina Portnaya Benjamin Faupin Lulu Fahoum Ory Ramon Yachin Cohen Shimon Mizrahi Uri Cogan 《Journal of Polymer Science.Polymer Physics》2003,41(23):3053-3063
The swelling of polyacrylamide (PAAm) gels increased with rising glucose concentrations, and so did the osmotic pressure of the soluble polymer and its intrinsic viscosity. A Flory–Huggins‐based model for the osmotic pressure of a nonionic hydrophilic polymer in a ternary solution consisting of a main solvent, a polymer, and a nondissociating low‐molecular‐weight cosolute was developed and examined. The model‐calculated values were in reasonably good agreement with experimental results for the water–PAAm–glucose system studied when PAAm–water and glucose–water interaction coefficients from the binary systems were used, and only the PAAm–glucose interaction coefficient was adjusted. Its negative value suggested a favorable interaction of glucose and PAAm, supporting the notion of glucose being a good cosolvent for PAAm. Isothermal titration microcalorimetry results showed no evidence for the binding of glucose to PAAm, but an exothermic interaction was indicated between glucose and PAAm. Microcalorimetrically determined enthalpic contributions to the Flory–Huggins interaction coefficients showed enthalpically favorable binary interactions, particularly the enthalpic component of the PAAm–glucose interaction coefficient (χH23), which was slightly negative. The enthalpically favorable interaction between glucose and PAAm may explain the increased osmotic pressure of PAAm in glucose solutions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3053–3063, 2003 相似文献
52.
Boaz Turner Mark Botoshansky Yoav Eichen 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》1998,110(18):2633-2637
53.
Spectral reflectance of maple, chestnut and beech leaves in a wide range of pigment content and composition was investigated to devise a nondestructive technique for total carotenoid (Car) content estimation in higher plant leaves. Reciprocal reflectance in the range 510 to 550 nm was found to be closely related to the total pigment content in leaves. The sensitivity of reciprocal reflectance to Car content was maximal in a spectral range around 510 nm; however, chlorophylls (Chl) also affect reflectance in this spectral range. To remove the Chl effect on the reciprocal reflectance at 510 nm, a reciprocal reflectance at either 550 or 700 nm was used, which was linearly proportional to the Chl content. Indices for nondestructive estimation of Car content in leaves were devised and validated. Reflectances in three spectral bands, 510+/-5 nm, either 550+/-15 nm or 700+/-7.5 nm and the near infrared range above 750 nm are sufficient to estimate total Car content in plant leaves nondestructively with a root mean square error of less than 1.75 nmol/cm2. 相似文献
54.
We predict quantum correlations between noninteracting particles evolving simultaneously in a disordered medium. While the particle density follows the single-particle dynamics and exhibits Anderson localization, the two-particle correlation develops unique features that depend on the quantum statistics of the particles and their initial separation. On short time scales, the localization of one particle becomes dependent on whether or not the other particle is localized. On long time scales, the localized particles show oscillatory correlations within the localization length. These effects can be observed in Anderson localization of nonclassical light and ultracold atoms. 相似文献
55.
An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting “hybrid” imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T2* effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T2 contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image. 相似文献
56.
We demonstrate that femtosecond ultraviolet and visible coherent anti-Stokes Raman spectroscopy provides the sensitivity and specificity needed to distinguish between two similar molecules of pyridinedicarboxylic acid. The Fourier transforms of the temporal measurements provide the energy difference between the ground state vibrational modes. Quantum chemical calculations provide theoretical predictions that agree well with the measurements. The present technique allows us to distinguish 10 cm(-1) frequency shifts by using pulses ten times broader than the shifts. 相似文献
57.
Tal S Salman H Abraham Y Botoshansky M Eichen Y 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(18):4858-4864
Photoinduced-electron-transfer (PET)-based chemosensing is a very elegant way of reporting the presence of a guest species in solution. This method was successfully applied for the detection of different ionic species, such as cations, anions, and protons. Herein, we report on the application of the PET chemosensing concept for the efficient and selective detection of different alkylating agents. 2-(2-Dimethylaminoethyl)benzo[de]isoquinoline-1,3-dione (1) was found to be a highly selective and effective PET chemosensor that turns luminescent upon reacting with different alkylating agents. This PET-based system detected even rather weak alkylating agents, such as dichloromethane. A PET-based sensor that consists of 1 as the active component could detect rather low concentrations of alkylating agents in solution and in the gas phase. 相似文献
58.
Godsi O Turner B Suwinska K Peskin U Eichen Y 《Journal of the American Chemical Society》2004,126(41):13519-13525
The enolpyridine, OH-ketoenamime, NH equilibrium in crystals of 1,3-bis(pyridin-2-yl)propan-2-one was studied using temperature-dependent single-crystal X-ray diffraction. The relative population of the different tautomers was found to be sensitive to the temperature in the range of 100-300 K, illustrating the small thermodynamic difference between these two tautomers. This energy resemblance is partially attributed to the molecular packing in the crystal, where the molecules are arranged in the form of dimers. Ab initio electronic energy calculations (HF/6-31G** and MP2/6-31G**) reveal the effect of dimerization in the crystal on the electronic energy levels. Several tautomeric states were identified in the dimer of 1,3-bis(pyridin-2-yl)propan-2-one. A model is proposed in which four of these dimer states are populated in the crystal at ambient temperatures. The crystallographic data were treated according to this four-state dimer model, suggesting that the free energy of the OH-NH dimers is higher than that of the OH-OH dimers by 120 +/- 10 cal mol(-1) and that the NH-NH dimers are yet higher in free energy by 50 +/- 10 cal mol(-1). 相似文献
59.
Multidimensional spectroscopy plays a central role in contemporary magnetic resonance. A general feature of multidimensional NMR is its inherent multiscan nature, stemming from the methodology's reliance on a series of independent acquisitions to sample the spins' evolutions throughout the indirect time domains. Contrasting this traditional feature, an acquisition scheme has recently been reported that enables the collection of complete of multidimensional NMR data sets within one single scan. Provided that the signals to be observed are sufficiently strong, this new "ultrafast" protocol can thus shorten the acquisition times of multidimensional NMR experiments by several orders of magnitude. This new methodology operates by departing from temporal encoding principles used since the advent of Fourier-transform NMR, replacing them with a spatial encoding of the spin interactions. Spatial encoding operates in turn on the basis of novel radiofrequency irradiation and magnetic field gradient waveform manipulations, designed so as to impart on the sample a coherent spin magnetization pattern that reflects the internal interactions to be measured. Given the central role played by this new kind of spectroscopic-oriented manipulations in ultrafast NMR, we devote this review to surveying different variants that have hitherto been proposed for their implementation. These include both discrete and continuous versions, real- and constant-time implementations, as well as amplitude- and phase-modulated alternatives. The principles underlying these various spatial encoding approaches are treated, their operation is graphically illustrated as well as formally derived within suitable theoretical frameworks, and an in-depth comparison of their line shape characteristics is discussed. 相似文献
60.
Multidimensional nuclear magnetic resonance (NMR) provides one of the foremost analytical tools available to elucidate the structure and dynamics of complex molecules in their native states. Executing this kind of experiment generally requires collecting an n-dimensional time-domain signal S, from which the spectrum arises via an appropriate Fourier analysis of its various time variables. This time-domain signal is actually measured directly only along one of the time axes, while the effects introduced by the remaining time variables are monitored via a parametric incrementation of their values throughout independent experiments. Two-dimensional (2D) NMR experiments thus usually require longer acquisition times than unidimensional experiments, 3D NMR is orders-of-magnitude more time consuming than 2D spectroscopy, etc. Very recently, we proposed and demonstrated an approach whereby data acquisition in 2D NMR can be parallelized, enabling the collection of complete 2D spectral sets within a single transient. The present paper discusses the extension of this 2D NMR methodology to an arbitrary number of dimensions. The principles of the ensuing ultrafast n-dimensional NMR approach are described, and a variety of homo- and heteronuclear 3D and 4D NMR spectra collected within a fraction of a second are presented. 相似文献