首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   6篇
化学   78篇
数学   1篇
物理学   7篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   7篇
  2006年   2篇
  2005年   9篇
  2004年   4篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有86条查询结果,搜索用时 62 毫秒
41.
This work is focused on the comparative analysis of electrochemical and transport properties in the major families of cathode and anode compositions for intermediate-temperature solid oxide fuel cells (SOFCs) and materials science-related factors affecting electrode performance. The first part presents a brief overview of the electrochemical and chemical reactions in SOFCs, specific rate-determining steps of the electrode processes, solid oxide electrolyte ceramics, and effects of partial oxygen ionic and electronic conductivities in the SOFC components. The aspects associated with materials compatibility, thermal expansion, stability, and electrocatalytic behavior are also briefly discussed. Primary attention is centered on the experimental data and approaches reported during the last 10–15 years, reflecting the main challenges in the field of materials development for the ceramic fuel cells.  相似文献   
42.
The total conductivity and Seebeck coefficient of La2Ni0.9Fe0.1O4+δ with K2NiF4-type structure, studied in the oxygen partial pressure range from 10−5 to 0.5 atm at 973-1223 K, were analyzed in combination with the steady-state oxygen permeability, oxygen non-stoichiometry and Mössbauer spectroscopy data in order to examine the electronic and ionic transport mechanisms. Doping of La2NiO4+δ with iron was found to promote hole localization on nickel cations due to the formation of stable Fe3+ states, although the electrical properties dominated by p-type electronic conduction under oxidizing conditions exhibit trends typical for both itinerant and localized behavior of the electronic sublattice. The segregation of metallic Ni on reduction, which occurs at oxygen chemical potentials close to the low-p(O2) stability boundary of undoped lanthanum nickelate, is responsible for the high catalytic activity towards partial oxidation of methane by the lattice oxygen of La2Ni0.9Fe0.1O4+δ as revealed by thermogravimetry and temperature-programmed reduction in dry CH4-He flow at 573-1173 K. A model for the oxygen permeation fluxes through dense La2Ni0.9Fe0.1O4+δ ceramics, limited by both bulk ionic conduction and surface exchange kinetics, was proposed and validated.  相似文献   
43.
The molecular and electronic structures, stabilities, bonding features and magnetic properties of prototypical planar isocyclic cyclo-U n X n ( n = 3, 4; X = O, NH) and heterocyclic cyclo-U n (mu 2-X) n ( n = 3, 4; X = C, CH, NH) clusters as well as the E@[ c-U 4(mu 2-C) 4], (E = H (+), C, Si, Ge) and U@[ c-U 5(mu 2-C) 5] molecules including a planar tetracoordinate element E (ptE) and pentacoordinate U (ppU) at the ring centers, respectively, have been thoroughly investigated by means of electronic structure calculation methods at the DFT level. It was shown that 5f orbitals play a key role in the bonding of these f-block metal systems significantly contributing to the cyclic electron delocalization and the associated magnetic diatropic (magnetic aromaticity) response. The aromaticity of the perfectly planar cyclo-U n X n ( n = 3, 4; X = O, NH), cyclo-U n (mu 2-X) n ( n = 3, 4; X = C, CH, NH), E@[ c-U 4(mu 2-C) 4], (E = H (+), C, Si, Ge) and U@[ c-U 5(mu 2-C) 5] clusters was verified by an efficient and simple criterion in probing the aromaticity/antiaromaticity of a molecule, that of the nucleus-independent chemical shift, NICS(0), NICS(1), NICS zz (0) and the most refined NICS zz (1) index in conjunction with the NICS scan profiles. Natural bond orbital analyses provided a clear picture of the bonding pattern in the planar isocyclic and heterocyclic uranium clusters and revealed the features that stabilize the ptE's inside the six- and eight-member uranacycle rings. The ptE's benefit from a considerable electron transfer from the surrounding uranium atoms in the E@[ c-U 4(mu 2-C) 4], (E = H (+), C, Si, Ge) and U@[ c-U 5(mu 2-C) 5] clusters justifying the high occupancy of the np orbitals of the central atom E.  相似文献   
44.
45.
The structural, electronic, bonding, magnetic, and optical properties of bimetallic [Ru(n)Au(m)](0/+) (n + m ≤ 3; n, m = 0-3) clusters were computed in the framework of the density functional theory (DFT) and time-dependent DFT (TD-DFT) using the full-range PBE0 non local hybrid GGA functional combined with the Def2-QZVPP basis sets. Several low-lying states have been investigated and the stability of the ground state spinomers was estimated with respect to all possible fragmentation schemes. Molecular orbital and population analysis schemes along with computed electronic parameters illustrated the details of the bonding mechanisms in the [Ru(n)Au(m)](0/+) clusters. The TD-DFT computed UV-visible absorption spectra of the bimetallic clusters have been fully analyzed and compared to those of pure gold and ruthenium clusters. Assignments of all principal electronic transitions are given and interpreted in terms of contribution from specific molecular orbital excitations.  相似文献   
46.
M?ssbauer spectroscopy and magnetization studies of YBaCo(4-x)Fe(x)O(7+δ) (x = 0-0.8) oxidized at 0.21 and 100 atm O(2), indicate an increasing role of penta-coordinated Co(3+) states when the oxygen content approaches 8-8.5 atoms per formula unit. Strong magnetic correlations are observed in YBaCo(4-x)Fe(x)O(8.5) from 2 K up to 55-70 K, whilst the average magnetic moment of Co(3+) is lower than that for δ ≤ 0.2, in correlation with the lower (57)Fe(3+) isomer shifts determined from M?ssbauer spectra. The hypothesis on dominant five-fold coordination of cobalt cations was validated by molecular dynamics modeling of YBaCo(4)O(8.5). The iron solubility limit in YBaCo(4-x)Fe(x)O(7+δ) corresponds to approximately x ≈ 0.7. The oxygen intercalation processes in YBaCo(4)O(7+δ) at 470-700 K, analyzed by X-ray diffraction, thermogravimetry and controlled-atmosphere dilatometry, lead to unusual volume expansion opposing to the cobalt cation radius variations. This behavior is associated with increasing cobalt coordination numbers and with rising local distortions and disorder in the crystal lattice on oxidation, predicted by the computer simulations. When the oxygen partial pressure increases from 4 × 10(-5) to 1 atm, the linear strain in YBaCo(4)O(7+δ) ceramics at 598 K is as high as 0.33%.  相似文献   
47.
Incorporation of alkaline-earth cations into the zircon-type lattice of Ce1−xAxVO4+δ (A=Ca, Sr; x=0−0.2) was found to significantly increase the p-type electronic conductivity and to decrease the Seebeck coefficient, which becomes negative at x≥0.1. The oxygen ionic conductivity is essentially unaffected by doping. The ion transference numbers of Ce1−xAxVO4+δ in air, determined by the faradaic efficiency measurements, are in the range from 2×10−4 to 6×10−3 at 973–1223 K, increasing when temperature increases or alkaline-earth cation content decreases. The results on the partial conductivities and Seebeck coefficient suggest the presence of hyperstoichiometric oxygen, responsible for ionic transport, in the lattice of doped cerium vanadates. The activation energies for the electron-hole and ionic conduction both decrease on doping and vary in the ranges 39–45 kJ/mol and 87–112 kJ/mol, respectively. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15–21, 2002.  相似文献   
48.
Recently, the solid solution Ce2Au1− x Co xSi3 has been shown to exhibit many magnetic anomalies associated with the competition between magnetic ordering and the Kondo effect. Here we report high pressure electrical resistivity of Ce2AuSi3, ac susceptibility (X) and magnetoresistance of various alloys of this solid solution in order to gain better knowledge of the magnetism of these alloys. High pressure resistivity behavior is consistent with the proposal that Ce2AuSi3 lies at the left-hand side of the maximum in Doniach’s magnetic phase diagram. The ac X data reveal that there are in fact two magnetic transitions, one at 2 K and the other at 3 K for this compound, both of which are spin-glass-like. However, as the Co concentration is increased, antiferromagnetism is stabilized for intermediate compositions before attaining non-magnetism for the Co end member.  相似文献   
49.
Increasing Sr2+ and Ti4+ concentrations in perovskite-type $ {\left( {{\hbox{L}}{{\hbox{a}}_{0.{75} - x}}{\hbox{S}}{{\hbox{r}}_{0.{25} + x}}} \right)_{0.{95}}}{\hbox{M}}{{\hbox{n}}_{0.{5}}}{\hbox{C}}{{\hbox{r}}_{0.{5} - x}}{\hbox{T}}{{\hbox{i}}_x}{{\hbox{O}}_{{3} - }}_\delta \left( {x = 0 - 0.{5}} \right) $ results in slightly higher thermal and chemical expansion, whereas the total conductivity activation energy tends to decrease. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range (10.8?C14.5)?×?10?6?K?1 at 373?C1,373?K, being almost independent of the oxygen partial pressure. Variations of the conductivity and Seebeck coefficient, studied in the oxygen pressure range 10?18?C0.5?atm, suggest that the electronic transport under oxidizing and moderately reducing conditions is dominated by p-type charge carriers and occurs via a small-polaron mechanism. Contrary to the hole concentration changes, the hole mobility decreases with increasing x. The oxygen permeation fluxes through dense ceramic membranes are quite similar for all compositions due to very low level of oxygen nonstoichiometry and are strongly affected by the grain-boundary diffusion and surface exchange kinetics. The porous electrodes applied onto lanthanum gallate-based solid electrolyte exhibit a considerably better electrochemical performance compared to the apatite-type La10Si5AlO26.5 electrolyte at atmospheric oxygen pressure, while Sr2+ and Ti4+ additions have no essential influence on the polarization resistance. In H2-containing gases where the electronic transport in $ {\left( {{\hbox{L}}{{\hbox{a}}_{0.{75} - x}}{\hbox{S}}{{\hbox{r}}_{0.{25} + x}}} \right)_{0.{95}}}{\hbox{M}}{{\hbox{n}}_{0.{5}}}{\hbox{C}}{{\hbox{r}}_{0.{5} - x}}{\hbox{T}}{{\hbox{i}}_x}{{\hbox{O}}_{{3} - }}_\delta $ perovskites becomes low, co-doping deteriorates the anode performance, which can be however improved by infiltrating Ni and $ {\hbox{Ce}}{{\hbox{O}}_{{\rm{2}} - }}_\delta $ v into the porous oxide electrode matrix.  相似文献   
50.
Mössbauer spectroscopy of layered YBaCo3.96Fe0.04O7+δ (δ=0.02 and 0.80), where 1% cobalt is substituted with 57Fe isotope, revealed no evidence of charge ordering at 4-293 K. The predominant state of iron cations was found trivalent, irrespective of their coordination and oxygen stoichiometry variations determined by thermogravimetric analysis. The extremely slow kinetics of isothermal oxidation at 598 K in air, and the changes of Fe3+ fractions in the alternating triangular and Kagomé layers in oxidized YBaCo3.96Fe0.04O7.80, may suggest that oxygen intercalation is accompanied with a substantial structural reconstruction stagnated due to sluggish cation diffusion. Decreasing temperature below 75-80 K leads to gradual freezing of the iron magnetic moments in inverse correlation with the content of extra oxygen. The formation of metal-oxygen octahedra and resultant structural distortions extend the temperature range where the paramagnetic and frozen states co-exist, down to 45-50 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号