首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   2篇
  国内免费   1篇
化学   118篇
力学   2篇
数学   76篇
物理学   38篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   12篇
  2011年   9篇
  2010年   3篇
  2009年   8篇
  2008年   10篇
  2007年   16篇
  2006年   8篇
  2005年   11篇
  2004年   16篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1995年   5篇
  1993年   4篇
  1992年   5篇
  1990年   2篇
  1989年   4篇
  1984年   6篇
  1970年   4篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1965年   2篇
  1963年   6篇
  1962年   2篇
  1958年   3篇
  1954年   2篇
  1937年   1篇
  1936年   2篇
  1932年   3篇
  1930年   2篇
  1929年   1篇
  1928年   1篇
  1926年   1篇
  1922年   2篇
  1887年   1篇
  1874年   1篇
  1871年   1篇
  1870年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
91.
The nearest shrunken centroid (NSC) Classifier is successfully applied for class prediction in a wide range of studies based on microarray data. The contribution from seemingly irrelevant variables to the classifier is minimized by the so‐called soft‐thresholding property of the approach. In this paper, we first show that for the two‐class prediction problem, the NSC Classifier is similar to a one‐component discriminant partial least squares (PLS) model with soft‐shrinkage of the loading weights. Then we introduce the soft‐threshold‐PLS (ST‐PLS) as a general discriminant‐PLS model with soft‐thresholding of the loading weights of multiple latent components. This method is especially suited for classification and variable selection when the number of variables is large compared to the number of samples, which is typical for gene expression data. A characteristic feature of ST‐PLS is the ability to identify important variables in multiple directions in the variable space. Both the ST‐PLS and the NSC classifiers are applied to four real data sets. The results indicate that ST‐PLS performs better than the shrunken centroid approach if there are several directions in the variable space which are important for classification, and there are strong dependencies between subsets of variables. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
92.
93.
Optical rectification of ultrashort near-IR laser pulses with tilted pulse fronts and pulse energies of a few J in Mg-doped stoichiometric LiNbO3 cooled to low temperature is a powerful technique for efficient generation of THz pulses. The pulse energy critically depends on the Mg doping (necessary for preventing photorefractive damage) and can be easily increased by a factor of three if the MgO content is reduced. Pulse energies up to 400 pJ at repetition rates of 200 kHz and 3.4% quantum conversion efficiency are achieved at 77 K. At 10 K, changing the tilt angle of the pump pulse front results in continuous tuning of the frequency across the 1.0–4.4 THz range. The temporal pulse shapes measured by electro-optic sampling are in good agreement with the signal calculated by a simple theory. This model predicts tunability on a considerably broader range and narrower spectra even at room temperature if GaSe is used instead of LiNbO3. The advantages of the velocity matching technique utilizing tilted pulse fronts are analyzed in comparison with quasi-phase-matching in periodically poled LiNbO3 crystals. The first method provides a ten times higher pulse energy conversion efficiency. PACS 42.65.Ky; 42.70.Mp; 42.72.Ai  相似文献   
94.
A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.  相似文献   
95.
Large‐scale on‐the‐fly Born–Oppenheimer molecular dynamics simulations using recent advances in linear scaling electronic structure theory and trajectory integration techniques have been performed for protonated water clusters around the magic number (H2O)nH+, for n = 20 and 21. Besides demonstrating the feasibility and efficiency of the computational approach, the calculations reveal interesting dynamical details. Elimination of water molecules is found to be fast for both cluster sizes but rather insensitive to the initial geometry. The water molecules released acquire velocities compatible with thermal energies. The proton solvation shell changes between the well‐known Eigen and Zundel motifs and is characterized by specific low‐frequency vibrational modes, which have been quantified. The proton transfer mechanism largely resembles that of bulk water but one interesting variation was observed. © 2012 Wiley Periodicals, Inc.  相似文献   
96.
A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field (SCF) theories is presented and illustrated with applications to molecules consisting of more than 1000 atoms. The diagonalization bottleneck of traditional SCF methods is avoided by carrying out a minimization of the Roothaan-Hall (RH) energy function and solving the Newton equations using the preconditioned conjugate-gradient (PCG) method. For rapid PCG convergence, the Lowdin orthogonal atomic orbital basis is used. The resulting linear-scaling trust-region Roothaan-Hall (LS-TRRH) method works by the introduction of a level-shift parameter in the RH Newton equations. A great advantage of the LS-TRRH method is that the optimal level shift can be determined at no extra cost, ensuring fast and robust convergence of both the SCF iterations and the level-shifted Newton equations. For density averaging, the authors use the trust-region density-subspace minimization (TRDSM) method, which, unlike the traditional direct inversion in the iterative subspace (DIIS) scheme, is firmly based on the principle of energy minimization. When combined with a linear-scaling evaluation of the Fock/Kohn-Sham matrix (including a boxed fitting of the electron density), LS-TRRH and TRDSM methods constitute the linear-scaling trust-region SCF (LS-TRSCF) method. The LS-TRSCF method compares favorably with the traditional SCF/DIIS scheme, converging smoothly and reliably in cases where the latter method fails. In one case where the LS-TRSCF method converges smoothly to a minimum, the SCF/DIIS method converges to a saddle point.  相似文献   
97.
Zero field cooled dc-magnetization measurements of monodispersed Mn0.5Zn0.5Fe2O4 nanoparticles dispersed in kerosene exhibit two transitions at low temperatures. These transitions correspond to (i) the superparamagnetic to blocked superparamagnetic and (ii) the blocked superparamagnetic to surface spin-glass like/quantum superparamagnetic state upon lowering the temperature. The existence of a disorder surface is confirmed by recording small-angle neutron scattering data below and above the Curie temperature. Magnetic relaxation analysis shows a plateau at low temperature (below 5 K) with a slight minimum at 3 K, which is a characteristic of the surface spin-glass-like state. This is analyzed considering the energy distribution n(E)∼1/E. The existence of surface disorder dominates at low temperature and mimics the transition from superparamagnetic to quantum superparamagnetic states.  相似文献   
98.
99.
100.
The structure formation of sol-gel-derived epoxy siloxane compositions with different ratios of the main precursors (R TEOS/EPONEX 1510 = 16/38, 27/27, 38/16 wt %) and with different concentrations of detonation synthesis nanodiamonds (c DND = 0.05, 0.10, 0.20 wt %) has been investigated using small-angle neutron scattering (SANS). Based on the SANS data, it has been revealed that the synthesized epoxy siloxane xerogels are systems with a two-level fractal structure, in the formation of which the siloxane component plays a dominant role. It has been found that the fractal dimension D m2 and the radius of gyration R g2 of clusters in the epoxy siloxane compositions decrease with an increase in the content of the siloxane component. It has been established that the introduction of small additions of detonation synthesis nanodiamonds (less than 1 wt %) into the epoxy siloxane composition with an equal ratio of the main precursors R TEOS/EPONEX 1510 = 27/27 wt % leads to a transition from the two-level to three-level structure organization and affects the fractal dimension D m and the radius of gyration R g of the formed clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号