首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   2篇
  国内免费   1篇
化学   118篇
力学   2篇
数学   76篇
物理学   38篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   12篇
  2011年   9篇
  2010年   3篇
  2009年   8篇
  2008年   10篇
  2007年   16篇
  2006年   8篇
  2005年   11篇
  2004年   16篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1995年   5篇
  1993年   4篇
  1992年   5篇
  1990年   2篇
  1989年   4篇
  1984年   6篇
  1970年   4篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1965年   2篇
  1963年   6篇
  1962年   2篇
  1958年   3篇
  1954年   2篇
  1937年   1篇
  1936年   2篇
  1932年   3篇
  1930年   2篇
  1929年   1篇
  1928年   1篇
  1926年   1篇
  1922年   2篇
  1887年   1篇
  1874年   1篇
  1871年   1篇
  1870年   1篇
排序方式: 共有234条查询结果,搜索用时 0 毫秒
81.
An analysis of Dunlap's robust fitting approach reveals that the resulting two‐electron integral matrix is not manifestly positive semidefinite when local fitting domains or non‐Coulomb fitting metrics are used. We present a highly local approximate method for evaluating four‐center two‐electron integrals based on the resolution‐of‐the‐identity (RI) approximation and apply it to the construction of the Coulomb and exchange contributions to the Fock matrix. In this pair‐atomic resolution‐of‐the‐identity (PARI) approach, atomic‐orbital (AO) products are expanded in auxiliary functions centered on the two atoms associated with each product. Numerical tests indicate that in 1% or less of all Hartree–Fock and Kohn–Sham calculations, the indefinite integral matrix causes nonconvergence in the self‐consistent‐field iterations. In these cases, the two‐electron contribution to the total energy becomes negative, meaning that the electronic interaction is effectively attractive, and the total energy is dramatically lower than that obtained with exact integrals. In the vast majority of our test cases, however, the indefiniteness does not interfere with convergence. The total energy accuracy is comparable to that of the standard Coulomb‐metric RI method. The speed‐up compared with conventional algorithms is similar to the RI method for Coulomb contributions; exchange contributions are accelerated by a factor of up to eight with a triple‐zeta quality basis set. A positive semidefinite integral matrix is recovered within PARI by introducing local auxiliary basis functions spanning the full AO product space, as may be achieved by using Cholesky‐decomposition techniques. Local completion, however, slows down the algorithm to a level comparable with or below conventional calculations. © 2013 Wiley Periodicals, Inc.  相似文献   
82.
83.
84.
85.
A two-electron basis-set completeness profile is proposed by analogy with the one-electron profile introduced by D. P. Chong (Can J Chem 1995, 73, 79). It is defined as Y(alpha, beta) = sigmam sigman (Galpha(1)Gbeta(2)/(1/r12)/ psim(1)psin(2)) (psim(1)psin(2)/r12/Galpha(1)Gp(2)) and motivated by the expression for the basis-set truncation correction that occurs in the framework of explicitly correlated methods (Galpha is a scanning Gaussian-type orbital of exponent alpha and [psim] is the orthonormalized one-electron basis under study). The two-electron basis-set profiles provide a visual assessment of the suitability of basis sets to describe electron-correlation effects. Furthermore, they provide the opportunity to assess the quality of the basis set as a whole--not only of the individual angular momentum subspaces, as is the case for the one-electron basis-set profiles. The two-electron completeness profiles of the cc-pVXZ (X = D, T, Q), aug-cc-pVTZ, cc-pCVTZ, and SVP-auxiliary basis sets for the carbon atom are presented as illustrative examples.  相似文献   
86.
Summary The use of perturbation-dependent basis sets is analysed with emphasis on the connection between the basis sets at different values of the perturbation strength. A particular connection, the natural connection, that minimizes the change of the basis set orbitals is devised and the second quantization realization of this connection is introduced. It is shown that the natural connection is important for the efficient evaluation of molecular properties and for the physical interpretation of the terms entering the calculated properties. For example, in molecular Hessian calculations the natural connection reduces the size of the relaxation term, leading to faster convergence of the response equations. The physical separation of the terms also means that first-order non-adiabatic coupling matrix elements can be obtained in a very simple way from a molecular Hessian calculation.  相似文献   
87.
The Gaussian-type orbital and Gaussian-type geminal (GGn) model is applied to the water molecule, at the level of second-order M?ller-Plesset (MP2) theory. In GGn theory, correlation factors are attached to all doubly-occupied orbital pairs (GG0), to all doubly-occupied and singly-excited pairs (GG1), or to all orbital pairs (GG2). Optimizing the GG2 model using a weak-orthogonality functional, we obtain the current best estimate of the all-electron MP2 correlation energy of water, -361.95 mE(h). In agreement with previous observations, the GG1 model performs almost as well as the GG2 model (-361.26 mE(h)), whereas the GG0 model is poorer (-351.36 mE(h)). For the barrier to linearity of water, we obtain an MP2 correlation contribution of -463 +/- 5 cm(-1).  相似文献   
88.
The physical interactions among electrons and nuclei, responsible for the chemistry of atoms and molecules, is well described by quantum mechanics and chemistry is therefore fully described by the solutions of the Schr?dinger equation. In all but the simplest systems we must be content with approximate solutions, the principal difficulty being the treatment of the correlation between the motions of the many electrons, arising from their mutual repulsion. This article aims to provide a clear understanding of the physical concept of electron correlation and the modern methods used for its approximation. Using helium as a simple case study and beginning with an uncorrelated orbital picture of electronic motion, we first introduce Fermi correlation, arising from the symmetry requirements of the exact wave function, and then consider the Coulomb correlation arising from the mutual Coulomb repulsion between the electrons. Finally, we briefly discuss the general treatment of electron correlation in modern electronic-structure theory, focussing on the Hartree-Fock and coupled-cluster methods and addressing static and dynamical Coulomb correlation.  相似文献   
89.
We have implemented the use of mixed basis sets of Gaussian one- and two-electron (geminal) functions for the calculation of second-order M?ller-Plesset (MP2) correlation energies. In this paper, we describe some aspects of this implementation, including different forms chosen for the pair functions. Computational results are presented for some closed-shell atoms and diatomics. Our calculations indicate that the method presented is capable of yielding highly accurate second-order correlation energies with rather modest Gaussian orbital basis sets, providing an alternative route to highly accurate wave functions. For the neon atom, the hydrogen molecule, and the hydrogen fluoride molecule, our calculations yield the most accurate MP2 energies published so far. A critical comparison is made with established MP2-R12 methods, revealing an erratic behaviour of some of these methods, even in large basis sets.  相似文献   
90.
The nuclear magnetic resonance (NMR) parameters in porphyrin and porphycene have been calculated to investigate their changes during the process of proton exchange, using density-functional theory (DFT) for both the spin-spin coupling constants and the shielding constants. In addition, in calculations on the smaller 1,3-bis(arylimino)isoindoline molecule, we have tested the performance of our computational approach against experimental data. The calculated nuclear spin-spin coupling constants and shielding constants have been analyzed as functions of the progress of the proton transfer between two nitrogen atoms. The one-bond couplings between proton and nitrogen, dominated by the Fermi-contact term, decay steeply as the internuclear distance increases. The small changes in the intramolecular J(HH) coupling between two inner protons are mainly determined by the sum of relatively large spin-orbit terms. The isotropic shielding constant shows a strong deshielding of the nitrogen nuclei as the proton migrates away. Both the isotropic shielding of the exchanged protons and the shielding anisotropy exhibit a minimum close to the transition states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号