首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   7篇
晶体学   1篇
力学   2篇
数学   8篇
物理学   11篇
  2018年   3篇
  2017年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1975年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
11.
12.
13.
This paper is a survey of results on representations of alternative algebras and superalgebras. In particular, new results of the authors on the subject are presented.  相似文献   
14.
The mechanism and spectral dependence of the quantum yield of singlet oxygen O(2)(a (1)Δ(g)) photogenerated by UV radiation in gaseous oxygen at elevated pressure (32-130 bar) have been experimentally investigated within the 238-285 nm spectral region overlapping the range of the Wulf bands in the absorption spectrum of oxygen. The dominant channel of singlet oxygen generation with measured quantum yield up to about 2 is attributed to the one-quantum absorption by the encounter complexes O(2)-O(2). This absorption gives rise to oxygen in the Herzberg III state O(2)(A' (3)Δ(u)), which is assumed to be responsible for singlet oxygen production in the relaxation process O(2)(A' (3)Δ(u), υ) + O(2)(X (3)Σ(g)(-)) → O(2)({a (1)Δ(g)}, {b (1)Σ(g)(+)}) + O(2)({a (1)Δ(g), υ = 0}, {b (1)Σ(g)(+), υ = 0}) with further collisional relaxation of b to a state. This mechanism is deduced from the analysis of the avoiding crossing locations on the potential energy surface of colliding O(2)-O(2) pair. The observed drop of the O(2)(a (1)Δ(g)) yield near spectral threshold for O(2) dissociation is explained by the competition between above relaxation and reaction giving rise to O(3) + O (O + O + O(2)) supposed in literature. The quantum yield of O(2)(a (1)Δ(g)) formation from encounter complex N(2)-O(2) measured at λ = 266 nm was found to be the same as that for O(2)-O(2).  相似文献   
15.
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.  相似文献   
16.
AP Balachandran 《Pramana》2002,59(2):359-368
We review certain emergent notions on the nature of space-time from noncommutative geometry and their radical implications. These ideas of space-time are suggested from developments in fuzzy physics, string theory, and deformation quantization. The review focuses on the ideas coming from fuzzy physics. We find models of quantum space-time like fuzzy S 4 on which states cannot be localized, but which fluctuate into other manifolds like CP3. New uncertainty principles concerning such lack of localizability on quantum space-times are formulated. Such investigations show the possibility of formulating and answering questions like the probability of finding a point of a quantum manifold in a state localized on another one. Additional striking possibilities indicated by these developments is the (generic) failure of CPT theorem and the conventional spin-statistics connection. They even suggest that Planck’s ‘constant’ may not be a constant, but an operator which does not commute with all observables. All these novel possibilities arise within the rules of conventional quantum physics, and with no serious input from gravity physics.  相似文献   
17.
18.
Crystallography Reports - Nanostructured spherical calcium carbonate particles with average sizes of 3.8 µm and 550 nm have been fabricated. Optimal conditions for adsorption of central...  相似文献   
19.
Oligomers based on (polyfluoroalkyl)methyl oxiranes and thiiranes was first synthesized by the cationic polymerization in the presence of boron trifluoride etherate. Molecular weights of the products were defined by cryoscopic method. It was found that synthesized oligomers can be used as additives to industrial lubricants and sulfur oligomers are of the greatest positive tribological effect.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号