排序方式: 共有28条查询结果,搜索用时 15 毫秒
21.
In contrast to previously published papers [A. Nowicki, Z. Klimonda, M. Lewandowski, J. Litniewski, P.A. Lewin, I. Trots, Comparison of sound fields generated by different coded excitations – Experimental results, Ultrasonics 44 (1) (2006) 121–129; J. Litniewski, A. Nowicki, Z. Klimonda, M. Lewandowski, Sound fields for coded excitations in water and tissue: experimental approach, Ultrasound Med. Biol. 33 (4) (2007) 601–607], which examined the factors influencing the spatial resolution of coded complementary Golay sequences (CGS), this paper investigates the effect of ultrasound imaging transducer’s fractional bandwidth on the gain of the compressed echo signal for different spectral widths of the CGS. Two different bit lengths were considered, specifically one and two cycles. Three transducers having fractional bandwidth of 25%, 58% and 80% and operating at frequencies 6, 4.4 and 6 MHz, respectively were examined (one of the 6 MHz sources was focused and made of composite material). The experimental results have shown that by increasing the code length, i.e. decreasing the bandwidth, the compressed echo amplitude could be enhanced. The smaller the bandwidth was the larger was the gain; the pulse-echo sensitivity of the echo amplitude increased by 1.88, 1.62 and 1.47, for 25%, 58% and 80% bandwidths, respectively. These results indicate that two cycles bit length excitation is more suitable for use with bandwidth limited commercially available imaging transducers. Further, the time resolution is retained for transducers with two cycles excitation providing the fractional bandwidth is lower than approximately 90%. The results of this work also show that adjusting the code length allows signal-to-noise-ratio (SNR) to be enhanced while using limited (less that 80%) bandwidth imaging transducers. Also, for such bandwidth limited transducers two cycles excitation would not decrease the time resolution, obtained with “conventional” spike excitation. Hence, CGS excitation could be successfully implemented with the existing, relatively narrow band imaging transducers without the need to use usually more expensive wideband, composite ones. 相似文献
22.
23.
W. Paszkowicz R. Minikayev P. Piszora D. Trots M. Knapp T. Wojciechowski R. Bacewicz 《Applied Physics A: Materials Science & Processing》2014,116(2):767-780
Structural and elastic properties of chalcopyrite-type CuInSe2 are determined in almost full stability range of temperature from 11 to 1,073 K, by in situ X-ray diffraction, employing a synchrotron-radiation source. The studied polycrystalline sample was prepared from a stoichiometric single crystal. Phase analysis reveals the formation of a trace amount of indium oxide impurity phase at the highest temperatures studied. From the obtained smooth lattice-parameter dependencies on temperature, the temperature dependencies of thermal expansion coefficients are derived. These coefficients are found to follow the trends previously reported for narrow temperature intervals. The present results provide a clear experimental evidence that the linear expansion coefficient is slightly negative below 47 K in both, a and c, directions; this temperature limit is in between the previously reported theoretical value (35 K) and the experimental ones (60 and 80 K) of such limit. 相似文献
24.
The modified synthetic transmit aperture (STA) algorithm is described. The primary goal of this work was to assess the possibility to improve the image quality achievable using synthetic aperture (SA) approach and to evaluate the performance and the clinical applicability of the modified algorithm using phantoms. The modified algorithm is based on the coherent summation of back-scattered RF echo signals with weights calculated for each point in the image and for all possible combinations of the transmit-receive pairs. The weights are calculated using the angular directivity functions of the transmit-receive elements, which are approximated by a far-field radiation pattern of a narrow strip transducer element vibrating with uniform pressure amplitude over its width. In this way, the algorithm takes into account the finite aperture of each individual element in the imaging transducer array. The performance of the approach developed was tested using FIELD II simulated synthetic aperture data of the point reflectors, which allowed the visualization (penetration) depth and lateral resolution to be estimated. Also, both simulated and measured data of cyst phantom were used for qualitative assessment of the imaging contrast improvement. The experimental data were obtained using 128 elements, 4 MHz, linear transducer array of the Ultrasonix research platform. The comparison of the results obtained using the modified and conventional (unweighted) STA algorithms revealed that the modified STA exhibited an increase in the penetration depth accompanied by a minor, yet discernible upon the closer examination, degradation in lateral resolution, mainly in the proximity of the transducer aperture. Overall, however, a considerable (12 dB) improvement in the image quality, particularly in the immediate vicinity of the transducer’s surface was demonstrated. The modified STA method holds promise to be of clinical importance, especially in the applications where the quality of the “near-field” image, that is the image in the immediate vicinity of the scanhead is of critical importance such as for instance in skin- and breast-examinations. 相似文献
25.
CsPbI3 and RbPbI3 were investigated by in situ powder diffraction within temperature ranges of 298-687 K and 298-714 K, respectively. Both compounds crystallize in orthorhombic Pnma symmetry and expand isotropically upon a heating, revealing almost the same relative change of the lattice parameters. A pronounced difference in the structural evolution close to 600 K was observed, namely, CsPbI3 undergoes first-order reversible phase transformation PnmaPnma+Pm3¯mPm3¯m, whereas no transitions (except of the sample's melting) in RbPbI3 were detected. An attempt to clarify the relation between the existence/absence of a phase transition and bulging out of the iodine environment around alkaline ions was undertaken. 相似文献
26.
Different polymorphs of MRe2O6 (MFe, Co, Ni) with rutile-like structures were prepared using high-pressure high-temperature synthesis. For syntheses temperatures higher than ∼1573 K, tetragonal rutile-type structures (P42/mnm) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re2O10-pairs were found for CoRe2O6 and NiRe2O6 at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re+4/Re+6 and M2+/M3+ is present in both structural modifications of CoRe2O6 and NiRe2O6. The low-temperature forms contain more Re+4 and M3+ than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe2O6 order with a ferromagnetic component at ∼24 K, whereas tetragonal and orthorhombic CoRe2O6 show two magnetic transitions: below ∼17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe2O6 is antiferromagnetic below 123 K. 相似文献
27.
28.
Bernard?SonnenscheinEmail author Thomas K. DM.?Peron Francisco A.?Rodrigues Jürgen?Kurths Lutz?Schimansky-Geier 《The European Physical Journal B - Condensed Matter and Complex Systems》2014,87(8):182
We study the collective dynamics of noise-driven excitable elements, so-called active rotators. Crucially here, the natural frequencies and the individual coupling strengths are drawn from some joint probability distribution. Combining a mean-field treatment with a Gaussian approximation allows us to find examples where the infinite-dimensional system is reduced to a few ordinary differential equations. Our focus lies in the cooperative behavior in a population consisting of two parts, where one is composed of excitable elements, while the other one contains only self-oscillatory units. Surprisingly, excitable behavior in the whole system sets in only if the excitable elements have a smaller coupling strength than the self-oscillating units. In this way positive local correlations between natural frequencies and couplings shape the global behavior of mixed populations of excitable and oscillatory elements. 相似文献