首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2389篇
  免费   110篇
  国内免费   3篇
化学   1739篇
晶体学   11篇
力学   46篇
数学   194篇
物理学   512篇
  2024年   9篇
  2023年   23篇
  2022年   76篇
  2021年   101篇
  2020年   79篇
  2019年   111篇
  2018年   108篇
  2017年   82篇
  2016年   110篇
  2015年   100篇
  2014年   103篇
  2013年   129篇
  2012年   187篇
  2011年   197篇
  2010年   128篇
  2009年   78篇
  2008年   131篇
  2007年   140篇
  2006年   145篇
  2005年   124篇
  2004年   97篇
  2003年   58篇
  2002年   58篇
  2001年   21篇
  2000年   14篇
  1999年   9篇
  1998年   11篇
  1997年   9篇
  1996年   14篇
  1995年   2篇
  1994年   12篇
  1993年   8篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1981年   4篇
  1977年   1篇
排序方式: 共有2502条查询结果,搜索用时 15 毫秒
41.
Molecular Diversity - Reliable prediction of anticancer potential of different substances for different cells using unambiguous algorithms is attractive alternative of experimental investigation of...  相似文献   
42.
The existence of non-radiating electromagnetic sources attracts much attention in photonic community and gives rise to extensive discussions of various applications in lasing, medical imaging, sensing, and nonlinear optics. In this article, the existence of magnetic anapole states (or magnetic-type non-radiating sources) characterized by a suppressed magnetic dipole radiation in a dielectric cylindrical particle is theoretically predicted and experimentally demonstrated. The specific features of the magnetic anapole state under ideal conditions are identified, followed by a demonstration of how their existence can be detected in practical structures. The concept is valid in various frequency bands from visible range for nanoparticles to microwave range for millimeter size objects. The experimental study is performed in microwave frequency range which allows not only to measure the far-field (scattered field) characteristics, but also to probe the peculiar field profile directly inside the dielectric particle. The experimental results agree well with the analytical ones and pave the way to detect and identify nontrivial different-type anapole states.  相似文献   
43.
A series of boron-containing lipids were prepared by reactions of cyclic oxonium derivatives of polyhedron boranes and metallacarboranes (closo-dodecaborate anion, cobalt and iron bis(dicarbollides)) with amine and carboxylic acids which are derived from cholesterol. Stable liposomal formulations, on the basis of synthesized boron-containing lipids, hydrogenated soybean l -α-phosphatidylcholine and (HSPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) as excipients, were prepared and then characterized by dynamic light scattering (DLS) that revealed the formation of particles to be smaller than 200 nm in diameter. The resulting liposomal formulations showed moderate to excellent loading and entrapment efficiency, thus justifying the design of the compounds to fit in the lipid bilayer and ensuring ease of in vivo use for future application. The liposomal formulations based on cobalt and iron bis(dicarbollide)-based lipids were found to be nontoxic against both human breast normal epithelial cells MCF-10A and human breast cancer cells MCF-7.  相似文献   
44.
Si nanoparticles (NPs), which are innovative promising light-harvesting components of thin-film solar cells and key-enabling biocompatible theranostic elements of infrared-laser and radiofrequency hyperthermia-based therapies of cancer cells in tumors and metastases, are significantly advanced in their near/mid-infrared band-to-band and free-carrier absorption via donor sulfur-hyperdoping during high-throughput facile femtosecond-laser ablative production in liquid carbon disulfide. High-resolution transmission electron microscopy and Raman microscopy reveal their mixed nanocrystalline/amorphous structure, enabling the extraordinary sulfur content of a few atomic percents and very minor surface oxidation/carbonization characterized by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. A 200-nm thick layer of the nanoparticles exhibits near−mid-infrared absorbance, comparable to that of the initial 380-micron thick n-doped Si wafer (phosphor-dopant concentration ≈1015 cm−3), with the corresponding extinction coefficient for the hyperdoped NPs being 4–7 orders higher over the broadband spectral range of 1–25 micrometers. Such ultimate, but potentially tunable mid-IR structured, multi-band absorption of various sulfur-impurity clusters and smooth free-carrier absorption are break through advances in mid-infrared (mid-IR) laser and radiofrequency (RF) hyperthermia-based therapies, as envisioned in the RF-heating tests, and in fabrication of higher-efficiency thin-film and bulk photovoltaic devices with ultra-broad (UV−mid-IR) spectral response.  相似文献   
45.
46.
Nanofluidics encompasses a wide range of advanced approaches to study charge and mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore, nanofluidic platforms show great potential to act as a test field for theoretical models. This review aims to highlight ionic Coulomb blockade (ICB)—an effect that is proposed to be the key player of ion channel selectivity, which is based upon electrostatic exclusion limiting ion transport. Thus, in this perspective, we focus on the most promising approaches that have been reported on the subject. We consider ion confinements of various dimensionalities and highlight the most recent advancements in the field. Furthermore, we concentrate on the most critical obstacles associated with these studies and suggest possible solutions to advance the field further.  相似文献   
47.
In this paper, a class of second-order servo plants under relay feedback is studied. Complete results on the uniqueness of solutions, existence and stability of the limit cycles are established using the point transformation method. And a numerical method is developed for determining the amplitude and period of a stable limit cycle from the plant parameters.  相似文献   
48.
One of modern approaches to the problem of coordination of classical mechanics and statistical physics — functional mechanics is considered. Deviations from classical trajectories are calculated and evolution of themoments of distribution function is constructed. The relation between the received results and absence of the Poincaré-Zermelo paradox in functional mechanics is discussed. Destruction of periodicity of movement in functional mechanics is shown and decrement of attenuation for classical invariants of movement on a trajectory of functional mechanical averages is calculated.  相似文献   
49.
The knowledge of the combustion chemistry of oxygenated fuels is essential for the development of detailed kinetic mechanisms suitable for the combustion processes involving biofuels. Moreover, epoxidized olefins, are increasingly used as chemical intermediates or as bulk chemicals. Nevertheless, a dearth of data for their reactivity in the oxidative environment can be observed in the current literature. This study reports the experimental and the model characterization of the flame structure of propylene oxide at stoichiometric and fuel-rich conditions at atmospheric pressure. To this aim, the species mole fractions in three premixed flames stabilized on a flat-flame burner have been quantitatively measured by using the flame sampling molecular beam mass spectrometry. Three chemical kinetic mechanisms retrieved from the current literature involving propylene oxide chemistry have been validated against the novel experimental data. In general, the predictions appeared to be in satisfactory agreement with measurements except for acetaldehyde and ketene. The rate of production analysis in the flame has shown that the discrepancies observed for these species are related basically to the incorrect ratio between the rates of primary reaction pathways of propylene oxide destruction.  相似文献   
50.
Fluorinated Eu‐doped SnO2 nanostructures with tunable morphology (shuttle‐like and ring‐like) are prepared by a hydrothermal method, using NaF as the morphology controlling agent. X‐ray diffraction, field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, X‐ray photoelectron spectroscopy, and energy dispersive spectroscopy are used to characterize their phase, shape, lattice structure, composition, and element distribution. The data suggest that Eu3+ ions are uniformly embedded into SnO2 nanocrystallites either through substitution of Sn4+ ions or through formation of Eu‐F bonds, allowing for high‐level Eu3+ doping. Photoluminescence features such as transition intensity ratios and Stark splitting indicate diverse localization of Eu3+ ions in the SnO2 nanoparticles, either in the crystalline lattice or in the grain boundaries. Due to formation of Eu‐F and Sn‐F bonds, the fluorinated surface of SnO2 nanocrystallites efficiently inhibits the hydroxyl quenching effect, which accounts for their improved photoluminescence intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号