首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   4篇
  国内免费   1篇
化学   111篇
数学   7篇
物理学   8篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   11篇
  2007年   12篇
  2006年   9篇
  2005年   15篇
  2004年   11篇
  2003年   5篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1987年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
51.
The reaction of Ph2P(S)N(SiMe3)2 with potassium tert-butoxide in a 1:1 molar ratio produces K[Ph2P(S)NSiMe3], which was converted to the AsPh4+ salt by metathesis with [AsPh4]Cl. The X-ray crystal structure of [AsPh4][Ph2P(S)NSiMe3] · 0.5 THF consists of noninteracting AsPh4+ and Ph2P(S)NSiMe3? ions with d(P? S) = 1.980(4) Å and d(P? N) = 1.555(8) Å. The PNSi bite angle in the anion is 136.3(5)°. Electrophilic attack by Ph2P(S)Cl occurs at the sulfur atom of Ph2P(S)NSiMe3?. The oxidation of the anion with iodine produces a disulfide which regenerates K[Ph2P(S)NSiMe2] upon treatment with potassium tert-butoxide.  相似文献   
52.
The treatment of Me3SiN=P(NHBut)3 with three equivalents of LiBun in toluene produces (Li3(P(NBut)3(NSiMe3)))2 comprised of a Li6N6 cyclic ladder capped on the two hexagonal faces by mu 3-PNSiMe3 groups; the corresponding reaction of O=P(NHBut)3 yields the face-sharing double-cubane (Li2(THF)P(O)(NBut)2(NHBut))2 with a central Li2O2 ring.  相似文献   
53.
Chivers T  Gao X  Parvez M 《Inorganic chemistry》1996,35(15):4336-4341
The reaction of (t)BuNHLi with TeCl(4) in toluene at -78 degrees C produces (t)BuNTe(&mgr;-N(t)Bu)(2)TeN(t)Bu (1) (55%) or [((t)BuNH)Te(&mgr;-N(t)Bu)(2)TeN(t)Bu]Cl (2) (65%) for 4:1 or 7:2 molar ratios, respectively. The complex {Te(2)(N(t)Bu)(4)[LiTe(N(t)Bu)(2)(NH(t)Bu)]LiCl}(2) (5) is obtained as a minor product (23%) from the 4:1 reaction. It is a centrosymmetric dimer in which each half consists of the tellurium diimide dimer 1 bonded through an exocyclic nitrogen atom to a molecule of LiTe(N(t)Bu)(2)(NH(t)Bu) which, in turn, is linked to a LiCl molecule. Crystals of 5 are monoclinic, of space group C2/c, with a = 27.680(6) ?, b = 23.662(3) ?, c = 12.989(2) ?, beta = 96.32(2) degrees, V = 8455(2) ?(3), and Z = 4. The final R and R(w) values were 0.046 and 0.047. At 65 degrees C in toluene solution, 5 dissociates into 1, LiCl, and {[LiTe(N(t)Bu)(2)(NH(t)Bu)](2)LiCl}(2) (4), which may also be prepared by treatment of [Li(2)Te(N(t)Bu)(3)](2) (6) with 2 equiv of HCl gas. The centrosymmetric structure of 6 consists of a distorted hexagonal prism involving two pyramidal Te(N(t)Bu)(3)(2)(-) anions linked by four Li atoms to give a Te(2)N(6)Li(4) cluster. Crystals of 6 are monoclinic, of space group P2(1)/c, with a = 10.194(2) ?, b = 17.135(3) ?, c = 10.482(2) ?, beta = 109.21(1) degrees, V = 1729.0(5) ?(3), and Z = 2. The final R and R(w) values were 0.026 and 0.023. VT (1)H and (7)Li NMR studies reveal that, unlike 1, compounds 2, 4, and 6 are fluxional molecules. Possible mechanisms for these fluxional processes are discussed.  相似文献   
54.
The geometries and energetics of different conformations of sulfur and selenium diimides E(NR)(2) (E = S, Se; R = H, Me, (t)Bu, C(6)H(3)Me(2)-2,6, SiMe(3)) have been studied by using various ab initio and DFT molecular orbital techniques. The syn,syn conformation is found to be most stable for parent E(NH)(2), but in general, the preferred molecular conformation for substituted chalcogen diimides is syn,anti. In the case of E(NH)(2) the present calculations further confirm that syn,syn and syn,anti conformations lie energetically close to each other. From the three different theoretical methods used, B3PW91/6-31G proved to be the most suitable method for predicting the geometries of chalcogen diimides. The optimized geometrical parameters are in a good agreement with all available experimental data. While qualitative energy ordering of the different conformations is independent of the level of theory, the quantitative energy differences are dependent on the method used. The performance and reliability of higher level ab initio calculations and DFT methods using large basis sets were tested and compared with experimental information where available. All of the higher level ab inito methods give very similar results, but the use of large basis sets with the B3PW91 method does not increase the reliability of the results. The combination of CCSD(T)/cc-pVDZ with the B3PW91/6-31G-optimized geometries is found to be the method of choice to study energetic properties of chalcogen diimides.  相似文献   
55.
The reaction of (Me3SiNSN)2S with TeCl4 in CH2Cl2 affords Cl2TeS2N2 (1) and that of (Me3SiNSN)2Se with TeCl4 produces Cl2TeSeSN2 (2) in good yields. The products were characterized by X-ray crystallography, as well as by NMR and vibrational spectroscopy and EI mass spectrometry. The Raman spectra were assigned by utilizing DFT molecular orbital calculations. The pathway of the formation of five-membered Cl2TeESN2 rings by the reactions of (Me3SiNSN)2E with TeCl4 (E = S, Se) is discussed. The reaction of (Me3SiNSN)2Se with [PPh4]2[Pd2X6] yields [PPh4]2[Pd2(mu-Se2N2S)X4] (X = Cl, 4a; Br, 4b), the first examples of complexes of the (Se2N2S)2- ligand. In both cases, this ligand bridges the two palladium centers through the selenium atoms.  相似文献   
56.
The reaction of Ru(CO)4(C2H4) or Ru(CO)5 with 1,5-Ph4P2N4S2 in CH2Cl2/hexane at 23°C produces the dimer [Ru(CO)2(Ph4 P2N4S2)]2 (2), which was shown by X-ray crystallography to have a centrosymmetric structure in which the P2N4S2 ring is attached to one ruthenium atom through two (geminal) nitrogen atoms and the remote sulfur atom and serves as a bridge to the other ruthenium atom via the second sulfur atom. Crystals of 2 ·2(CH2Cl2) are triclinic, space group P (No. 2), a = 12.901(1) Å, b = 13.072(1) Å, c = 10.123(1) Å, = 100.88(1)°, β = 98.90(1)°, γ = 67.50(1)°, V = 1542.4(3) Å, Z = 1 with final R and Rw values of 0.040 and 0.027, respectively.  相似文献   
57.
Reactions of (RNH)(3)PNSiMe(3) (3a, R = (t)()Bu; 3b, R = Cy) with trimethylaluminum result in the formation of {Me(2)Al(mu-N(t)Bu)(mu-NSiMe(3))P(NH(t)()Bu)(2)]} (4) and the dimeric trisimidometaphosphate {Me(2)Al[(mu-NCy)(mu-NSiMe(3))P(mu-NCy)(2)P(mu-NCy)(mu-NSiMe(3))]AlMe(2)} (5a), respectively. The reaction of SP(NH(t)Bu)(3) (2a) with 1 or 2 equiv of AlMe(3) yields {Me(2)Al[(mu-S)(mu-N(t)Bu)P(NH(t)()Bu)(2)]} (7) and {Me(2)Al[(mu-S)(mu-N(t)()Bu)P(mu-NH(t)Bu)(mu-N(t)Bu)]AlMe(2)} (8), respectively. Metalation of 4 with (n)()BuLi produces the heterobimetallic species {Me(2)Al[(mu-N(t)Bu)(mu-NSiMe(3))P(mu-NH(t)()Bu)(mu-N(t)()Bu)]Li(THF)(2)} (9a) and {[Me(2)Al][Li](2)[P(N(t)Bu)(3)(NSiMe(3))]} (10) sequentially; in THF solutions, solvation of 10 yields an ion pair containing a spirocyclic tetraimidophosphate monoanion. Similarly, the reaction of ((t)BuNH)(3)PN(t)()Bu with AlMe(3) followed by 2 equiv of (n)BuLi generates {Me(2)Al[(mu-N(t)Bu)(2)P(mu(2)-N(t)Bu)(2)(mu(2)-THF)[Li(THF)](2)} (11a). Stoichiometric oxidations of 10 and 11a with iodine yield the neutral spirocyclic radicals {Me(2)Al[(mu-NR)(mu-N(t)Bu)P(mu-N(t)Bu)(2)]Li(THF)(2)}(*) (13a, R = SiMe(3); 14a, R = (t)Bu), which have been characterized by electron paramagnetic resonance spectroscopy. Density functional theory calculations confirm the retention of the spirocyclic structure and indicate that the spin density in these radicals is concentrated on the nitrogen atoms of the PN(2)Li ring. When 3a or 3b is treated with 0.5 equiv of dibutylmagnesium, the complexes {Mg[(mu-N(t)()Bu)(mu-NH(t)()Bu)P(NH(t)Bu)(NSiMe(3))](2)} (15) and {Mg[(mu-NCy)(mu-NSiMe(3))P(NHCy)(2)](2)} (16) are obtained, respectively. The addition of 0.5 equiv of MgBu(2) to 2a results in the formation of {Mg[(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)](2)} (17), which produces the hexameric species {[MgOH][(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)]}(6) (18) upon hydrolysis. Compounds 4, 5a, 7-11a, and 15-17 have been characterized by multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy and, in the case of 5a, 9a.2THF, 11a, and 18, by X-ray crystallography.  相似文献   
58.
The relative stabilities and electronic structures of the linkage isomers NSO and SNO have been determined by the MNDO and ab initio Hartree—Fock—Slater methods. Both approaches predict a higher stability for SNO by ca. 100 kcal mol−1, but an overlap population analysis indicates substantially higher bond orders for NSO compared to SNO. The calculations also reveal a low energy pathway with a barrier of ca. 6 kcal mol−1 for the isomerization process NSO → SNO. Good agreement was found between the observed UV-visible absorption bands for NSOmax 379 nm) and SNOmax 340 nm) and calculated values of the electronic transition energies.  相似文献   
59.
The teaching laboratory is an ideal environment for fostering active learning; yet, it is often criticized for being too cookbook. In introductory courses, the high student population often dictates that many students perform the same experiment simultaneously. By working in discussion groups, with individual bench work, we are able to turn this communal effort into a strength. This article describes the revision of a recipe-style experiment into a student-designed procedure.  相似文献   
60.
The structure of bis[P,P‐di‐tert‐butyl‐N‐(di‐tert‐butylphosphorothioyl)phosphinimidothioato‐κS]sulfur(II) toluene solvate (systematic name: 5,13‐dibutyl‐7,7,11,11‐tetramethyl‐8,9,10‐trithia‐6,12‐diaza‐5λ5,7λ5,11λ5,13λ5‐tetraphosphaheptadeca‐6,11‐diene‐5,13‐dithione toluene solvate), C32H72N2P4S5·C7H8, at 173 K has monoclinic (C2/c) symmetry. The SII centre of (SPtBu2NPtBu2PS–)2S is coordinated in an S‐monodentate fashion to two [(SPtBu2)2N] monoanions. The molecule resides on a twofold axis which bisects the central S atom. The internal P—S distance is ca 0.19 Å longer than the terminal P=S bond and there is a compensating alternation in P—N bond distances. The central S—S—S angle is 106.79 (8)°. The toluene solvent molecule is disordered about a twofold axis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号