首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   0篇
化学   46篇
力学   1篇
数学   4篇
物理学   52篇
  2022年   1篇
  2015年   2篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2009年   1篇
  2008年   5篇
  2007年   12篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   7篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1987年   1篇
  1986年   2篇
  1985年   7篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
51.
The Influence of structure on the reduction of nitroxyl spin labels by ascorbic acid was examined using both piperidine and pyrrolidine nitroxyls. A five-fold molar excess of ascorbic acid and pH of 7.4 were used. The nitroxyl concentration was measured by electron spin resonance spectrometry. The five-membered (pyrrolidine) nitroxyls were more stable than the six-meabered derivatives. Ring substituents also influenced the reaction. The anionic derivatives were more stable than the unionized compounds which, in turn, were more stable than the amines (cations at pH 7.4).  相似文献   
52.
53.
54.
We analyse the evolution of a two-stage chemical reaction betweentwo neighbouring plumes of reactants. Under the assumption thatthe plumes are approximately Gaussian we derive a system ofordinary differential equations for the total amount, the centroidand the variance of each reactant. We compare the solution ofthese equations with full numerical simulation of the reaction.Excellent agreement is obtained, with solution of the near-Gaussianmodel requiring considerably less computational effort thanthe full simulations. Of key importance is the yield of thereaction, and we discuss this feature in particular.  相似文献   
55.
56.
57.
The Tamm–Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree–Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin–spin coupling constant. Particular attention is paid to the accuracy of the triplet spin–dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin–spin coupling constants is highlighted by this comparison.  相似文献   
58.
Ground- and excited-state diatomic bond lengths, vibrational levels, and potential-energy curves are determined using conventional and localized Hartree-Fock (LHF)-based density-functional theory. Exchange only and hybrid functionals (with various fractions of exchange) are considered, together with a standard generalized gradient approximation (GGA). Ground-state bond lengths and vibrational wave numbers are relatively insensitive to whether orbital exchange is treated using the conventional or LHF approach. Excited-state calculations are much more sensitive. For a standard fraction of orbital exchange, N2 and CO vertical excitation energies at experimental bond lengths are accurately described by both conventional and LHF-based approaches, providing an asymptotic correction is present. Excited-state bond lengths and vibrational levels are more accurate with the conventional approach. The best quality, however, is obtained with an asymptotically corrected GGA functional. For the ground and lowest four singlet excited states, the GGA mean absolute errors in bond lengths are 0.006 A (0.5%) and 0.011 A (0.8%) for N2 and CO, respectively. Mean absolute errors in fundamental vibrational wavenumbers are 49 cm(-1) (2.7%) and 68 cm(-1) (5.0%), respectively. The GGA potential-energy curves are compared with near-exact Rydberg-Klein-Rees curves. Agreement is very good for the ground and first excited state, but deteriorates for the higher states.  相似文献   
59.
We have used a potential wall method to investigate the role of d orbitals in the a(2) singly-occupied molecular orbitals of (2)A(2) negative ion states of two molecular series: pyridine, phosphabenzene, arsabenzene, stibabenzene (C(5)H(5)X, X = {N, P, As, Sb}), and furan, thiophene, selenophene, tellurophene (C(4)H(4)X, X = {O, S, Se, Te}). Unlike for the lower lying doubly occupied orbitals, heteroatom d-carbon p in-phase (bonding) interactions in these a(2) orbitals are clearly identified and explain the 0.5 eV stabilization of the (2)A(2) radical anion state in those compounds where the heteroatoms have d orbitals in the valence shell, compared to compounds where d orbitals are missing in the valence shell of the heteroatoms. The performance of both the potential wall approach and the approximate expression of Tozer and De Proft for calculating negative electron affinities has been also investigated, through a comparison with results obtained using electron-transmission spectroscopy experiments.  相似文献   
60.
Dispersion, static correlation, and delocalisation errors in density functional theory are considered from the unconventional perspective of the force on a nucleus in a stretched diatomic molecule. The electrostatic theorem of Feynman is used to relate errors in the forces to errors in the electron density distortions, which in turn are related to erroneous terms in the Kohn-Sham equations. For H(2), the exact dispersion force arises from a subtle density distortion; the static correlation error leads to an overestimated force due to an exaggerated distortion. For H(2)(+), the exact force arises from a delicate balance between attractive and repulsive components; the delocalisation error leads to an underestimated force due to an underestimated distortion. The net force in H(2)(+) can become repulsive, giving the characteristic barrier in the potential energy curve. Increasing the fraction of long-range exact orbital exchange increases the distortion, reducing delocalisation error but increasing static correlation error.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号