首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   641篇
  免费   59篇
  国内免费   5篇
化学   570篇
晶体学   2篇
力学   6篇
数学   23篇
物理学   104篇
  2023年   6篇
  2022年   15篇
  2021年   13篇
  2020年   18篇
  2019年   23篇
  2018年   10篇
  2017年   7篇
  2016年   25篇
  2015年   28篇
  2014年   34篇
  2013年   44篇
  2012年   40篇
  2011年   56篇
  2010年   23篇
  2009年   17篇
  2008年   32篇
  2007年   39篇
  2006年   28篇
  2005年   37篇
  2004年   41篇
  2003年   27篇
  2002年   20篇
  2001年   6篇
  2000年   15篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1988年   2篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1982年   2篇
  1981年   7篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1970年   1篇
  1967年   1篇
排序方式: 共有705条查询结果,搜索用时 15 毫秒
131.
Homogeneously fullerene‐dispersed membranes were prepared under the conditions in which a 10 wt % poly(1‐trimethylsilyl‐1‐propyne) solution containing 0.5 wt % fullerene was dried under a reduced pressure of 50 cmHg at 100 °C. UV‐vis spectra and microscopic observations of the fullerene membranes indicated that the fullerene was homogeneously dispersed in the membranes. The permeability coefficients of 1‐butene were found to be higher than those of n‐butane in the fullerene membranes, although the permeability coefficients of olefin gases were nearly equal to those of paraffin gases having the same number of carbon in poly(1‐trimethylsilyl‐1‐propyne) membranes containing no fullerene. Pressure dependence of permeability coefficients was clearly observed for the permeation of carbon dioxide, ethylene, ethane, 1‐butene, and n‐butane through the fullerene membranes, while no significant dependence was found for poly(1‐trimethylsilyl‐1‐propyne) membranes except for the permeation of 1‐butene and n‐butane. The pressure dependence of the permeability was explained by the dual‐mode sorption model. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1749–1755, 2000  相似文献   
132.
Polymerization of N‐(2‐phenylethoxycarbonyl)methacrylamide (PECMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was investigated in tetrahydrofuran (THF) kinetically and by means of electron spin resonance (ESR). The overall activation energy of the polymerization was calculated to be 58 kJ/mol. The initial polymerization rate (Rp) is expressed by Rp = k[MAIB]0.3[PECMA]2.3 at 60 °C. Such unusual kinetics may be ascribable to primary radical termination and to acceleration of propagation due to monomer association. Propagating poly(PECMA) radical was observed as a 13‐line spectrum by ESR under practical polymerization conditions. ESR‐determined rate constants of propagation (kp, 4.7–10.5 L/mol s) and termination (kt, 4.6 × 104 L/ml s) at 60 °C are much lower than those of methacrylamide and methacrylate esters. The Arrhenius plots of kp and kt gave activation energies of propagation (24 kJ/mol) and termination (25 kJ/mol). The copolymerizations of PECMA with styrene (St) and acrylonitrile were examined at 60 °C in THF. Copolymerization parameters obtained for the PECMA (M1) − St(M2) system are as follows: r1 = 0.58, r2 = 0.60, Q1 = 0.73, and e1 = +0.22. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4264–4271, 2000  相似文献   
133.
134.
135.
We have developed a thermal microscope which has an InSb detector and optics optimized for the camera. Using this system, we evaluated maximum resolution of a 30×/numerical aperture 0.71 lens made of silicon and germanium, and achieved the cutoff frequency of around 300 line pairs/mm, which is almost a diffraction-limited performance. The thermal microscope is installed on the THEMOS-1000, a product of Hamamatsu Photonics, for thermal emission analysis.  相似文献   
136.
137.

Abstract  

A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates.  相似文献   
138.
Activated carbon prepared from silk fibroin, which is free of metal elements, showed a high catalytic activity for the oxygen-reduction reaction (ORR). The activated carbon had a very high onset potential of Eonset = 0.83 V (vs. RHE) in oxygen-saturated 0.5 M H2SO4 at 60 °C. The ORR on the activated carbon proceeded by a four-electron process in the high-electrode-potential region; this gradually decreased to a 3.5-electron reaction below about 0.6 V (vs. RHE). Only about 1% of nitrogen atoms (mostly quaternary) remained in the activated carbon by heat-treatment at up to 1200 °C are responsible for the high catalytic activity. The open circuit voltage of a polymer electrolyte fuel cell using the activated carbon as the cathode and a platinum/carbon black anode under pure oxygen and hydrogen gases, respectively, both at one atmosphere, was 0.96 V at 27 °C.  相似文献   
139.
The reaction of [Ni2(OH)2(Me2-tpa)2]2+ (1) (Me2-tpa = bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) with H2O2 causes oxidation of a methylene group on the Me2-tpa ligand to give an N-dealkylated ligand and oxidation of a methyl group to afford a ligand-based carboxylate and an alkoxide as the final oxidation products. A series of sequential reaction intermediates produced in the oxidation pathways, a bis(mu-oxo)dinickel(III) ([Ni2(O)2(Me2-tpa)2]2+ (2)), a bis(mu-superoxo)dinickel(II) ([Ni2(O2)2(Me2-tpa)2]2+ (3)), a (mu-hydroxo)(mu-alkylperoxo)dinickel(II) ([Ni2(OH)(Me2-tpa)(Me-tpa-CH2OO)]2+ (4)), and a bis(mu-alkylperoxo)dinickel(II) ([Ni2(Me-tpa-CH2OO)2]2+ (5)), was isolated and characterized by various physicochemical measurements including X-ray crystallography, and their oxidation pathways were investigated. Reaction of 1 with H2O2 in methanol at -40 degrees C generates 2, which is extremely reactive with H2O2, producing 3. Complex 2 was isolated only from disproportionation of the superoxo ligands in 3 in the absence of H2O2 at -40 degrees C. Thermal decomposition of 2 under N2 generated an N-dealkylated ligand Me-dpa ((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) and a ligand-coupling dimer (Me-tpa-CH2)2. The formation of (Me-tpa-CH2)2 suggests that a ligand-based radical Me-tpa-CH2* is generated as a reaction intermediate, probably produced by H-atom abstraction by the oxo group. An isotope-labeling experiment revealed that intramolecular coupling occurs for the formation of the coupling dimer. The results indicate that the rebound of oxygen to Me-tpa-CH2* is slower than that observed for various high-valence bis(mu-oxo)dimetal complexes. In contrast, the decomposition of 2 and 3 in the presence of O2 gave carboxylate and alkoxide ligands, respectively (Me-tpa-COO- and Me-tpa-CH2O-), instead of (Me-tpa-CH2)2, indicating that the reaction of Me-tpa-CH2* with O2 is faster than the coupling of Me-tpa-CH2* to generate ligand-based peroxyl radical Me-tpa-CH2OO*. Although there is a possibility that the Me-tpa-CH2OO* species could undergo various reactions, one of the possible reactive intermediates, 4, was isolated from the decomposition of 3 under O2 at -20 degrees C. The alkylperoxo ligands in 4 and 5 can be converted to a ligand-based aldehyde by either homolysis or heterolysis of the O-O bond, and disproportionation of the aldehyde gives a carboxylate and an alkoxide via the Cannizzaro reaction.  相似文献   
140.
The DIBAL reduction of 2-phenylethyl 3,3,3-trifluoro-2-methylpropionate 2 at -78 degrees C afforded the aluminum acetal 3, and this intermediate, on worming up to 0 degrees C, was found to slowly decompose into the corresponding aldehyde 4, which smoothly reacted with appropriate nucleophiles in a one-pot manner in good to excellent yields with up to 93% diastereoselectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号