Control of cell adhesion is a key technology for cell-based drug screening and for analyses of cellular processes. We developed a method to spatiotemporally control cell adhesion using a photochemical reaction. We prepared a cell-culturing substrate by modifying the surface of a glass coverslip with a self-assembled monolayer of an alkylsiloxane having a photocleavable 2-nitrobenzyl group. Bovine serum albumin (BSA) was adsorbed onto the substrate to make the surface inert to cell adhesion. When exposed to UV light, the alkylsiloxane underwent a photocleavage reaction, leading to the release of BSA from the surface. Fibronectin, a protein promoting cell adhesion, was added to cover the irradiated regions and made them cell-adhesive. Seeding of cells on this substrate resulted in their selective adhesion to the illuminated regions. By controlling the sizes of the illuminated regions, we formed cell-adhesive spots smaller than single cells and located focal adhesions of the cells. Moreover, by subsequently illuminating the region alongside the cells patterned on the substrate in advance, we released their geometrical confinements and induced migration and proliferation. These manipulations were conducted under a conventional fluorescence microscope without any additional instruments. The present method of cell manipulation will be useful for cell biological studies as well as for the formation of cell arrays. 相似文献
Five new phenylethanoid glycosides, lamiusides A (1), B (2), C (3), D (4) and E (5), were isolated from the whole plants of Lamium purpureum L. (Labiatae) together with seven known compounds (6-12). On the basis of chemical and spectral analyses, the structures of the new compounds were elucidated to be 2-(3,4-dihydroxyphenyl)ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(4-O-trans-caffeoyl)-beta-D-glucopyranoside (1), 2-(3,4-dihydroxyphenyl)ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(4-O-trans-feruloyl)-beta-D-glucopyranoside (2), 2-(3,4-dihydroxyphenyl)ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(6-O-trans-caffeoyl)-beta-D-glucopyranoside (3), 2-(3,4-dihydroxyphenyl)-R,S-methoxy-ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(4-O-trans-caffeoyl)-beta-D-glucopyranoside (4) and 2-(3-hydroxy-4-methoxyphenyl)ethyl-O-alpha-L-rhamnopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->6)-(4-O-cis-feruloyl)-beta-D-glucopyranoside (5). In addition, the radical-scavenging activities of compounds 1-4 on 1,1-diphenyl-2-picrylhydrazyl radical were examined. 相似文献
Possible electron pairing in pi-conjugated positively charged annulenes such as (CH)(18) (18an) and (CH)(30) (30an) is studied and compared with that in the positively charged acenes. The total electron-phonon coupling constants in the monocations (l(HOMO)) for 18an and 30an are estimated. The E(2g) modes of 1611 and 1201 cm(-1) most strongly couple to the highest occupied molecular orbitals (HOMO) in 18an and 30an, respectively. The l(HOMO) values for annulenes are larger than those for acenes. The phase pattern difference between the HOMO of acenes localized on the edge part of carbon atoms and the delocalized HOMO of annulenes is the main reason for the calculated results. In view of the calculated results of the l(HOMO) values, intramolecular electron mobility (sigma(intra,HOMO)), and the reorganization energies (RE(HOMO)) in the positively charged molecules, the monocations of annulenes cannot easily become good conductors compared with the monocations of acenes, but the condition of the attractive electron-electron interactions is realized more easily in the monocations of annulenes than in the monocations of acenes. The hypothetical intramolecular supercurrent originating from both intramolecular and intermolecular vibrations in the monocations of annulenes and acenes in a case where the distance between two adjacent molecules is too large for the molecular crystal to become normal metallic state, is also discussed. 相似文献
A novel DNA methylation assay technique, termed bisulfite single-strand conformation polymorphism (bisulfite-SSCP), is a combination of sodium-bisulfite modification and fluorescence-based polymerase chain reaction (PCR)-SSCP. After bisulfite treatment followed by PCR amplification, methylated and unmethylated alleles can be simultaneously separated in a nondenaturing gel using an automated DNA sequencer. Using bisulfite-SSCP, methylation of hMLH1 was detected in a quantitative manner. This method is not only simple, quick, accurate, and quantitative, but detailed information about methylation is also available with less work. Methylation analysis of large numbers of samples for multiple loci will be facilitated by bisulfite-SSCP. 相似文献
Concentrations of108mAg,137Cs, and210Pb in oysters (Crassostrea gigas) were measured for about 10 years on the northeast coast of Japan. Silver-108m was detected in oyster samples collected from an open bay, and its concentrations decreased from the initial value of about 30 mBq/kg fresh in the early 1980s to the value of about 10 mBq/kg fresh in the early 1990s. This decrease could be mainly explained by effects of the ocean current in the early 1980s, and the coastal sea water thereafter, as well as by the advection and diffusion in the ocean. In the nearly-closed bays, concentrations of108mAg and210Pb in oysters were remarkably lower than in the open bays. It suggests that scavenging of silver and lead from the sea water effectively occurred in the nearly-closed bays. In contrast, concentrations of137Cs in oysters were similar in the open bays and in the nearly-closed bays. 相似文献
Cellular functions are frequently exploited as processing components for integrated chemical systems such as biochemical reactors and bioassay systems. Here, we have created a new cell-based microsystem exploiting the intrinsic pulsatile mechanical functions of cardiomyocytes to build a cellular micropump on-chip using cardiomyocyte sheets as prototype bio-microactuators. We first demonstrate cell-based control of fluid motion in a model microchannel without check valves and evaluate the potential performance of the bio-actuation. For this purpose, a poly(dimethylsiloxane) (PDMS) microchip with a microchannel equipped with a diaphragm and a push-bar structure capable of harnessing collective cell fluid mechanical forces was coupled to a cultured pulsating cardiomyocyte sheet, activating cell-based fluid movement in the microchannel by actuating the diaphragm. Cell oscillation frequency and correlated fluid displacement in this system depended on temperature. When culture temperature was increased, collective cell contraction frequency remained cooperative and synchronous but increased, while displacement was slightly reduced. We then demonstrated directional fluid pumping within microchannels using cantilever-type micro-check valves made of polyimide. A directional flow rate of nL min(-1) was produced. This cell micropump system could be further developed as a self-actuated and efficient mechanochemical transducer requiring no external energy sources for various purposes in the future. 相似文献
[70]Fullerene (C70) encapsulated into a surface‐cross‐linked liposome, a so‐called cerasome, was prepared by an exchange reaction incorporating C70?γ‐cyclodextrin complexes into lipid membranes. Fullerene exchange in a cerasome‐incorporated C70 (CIC70), as well as in a lipid‐membrane‐incorporated C70 (LMIC70), was completed within 1 min with stirring at 25 °C. CIC70 was more resistant to lysis than LMIC70 towards lysing agents such as surfactants. Furthermore, the photodynamic activity of CIC70 in HeLa cells was similar to that of LMIC70, indicating that C70 can act as a photosensitizing drug (PS) without release from cerasome membranes. Thus, in contrast with general drug‐delivery systems (DDSs), which require the drug to be released from the interior of liposomes, carriers for PSs for use in photodynamic therapy (PDT) do not necessarily need to release the drug. These results indicate that DDSs with high morphological stability can increase the residence time in blood and achieves tumor‐selective drug delivery by the enhanced permeability and retention (EPR) effect. 相似文献
Sort the bigs from the smalls : Reverse‐selective membranes, through which bigger molecules selectively permeate, are attractive for developing chemical processes. A new adsorption‐based reverse‐selective membrane that utilizes a Na cation occluded in a zeolitic framework is presented. The membrane developed enables the selective permeation and separation of bigger polar molecules, such as methanol and water, from hydrogen above 473 K.
We report {121, 123}Sb nuclear quadrupole resonance measurements under pressure in a novel heavy fermion (HF) system SmOs4Sb12. The nuclear spin-spin relaxation rate 1/T{2} exhibits a distinct peak near the coherent temperature of the Kondo effect. The isotope effect of 121Sb and 123Sb indicates that the peak in 1/T{2} is electrical in origin. The connection between the peak in 1/T{2} and the development of coherency of the Kondo effect is robust even under pressure. It is conjectured that charge fluctuation plays an important role in forming the HF state in SmOs4Sb12. 相似文献