首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2096篇
  免费   150篇
  国内免费   6篇
化学   1551篇
晶体学   7篇
力学   43篇
数学   300篇
物理学   351篇
  2024年   2篇
  2023年   35篇
  2022年   50篇
  2021年   67篇
  2020年   120篇
  2019年   98篇
  2018年   40篇
  2017年   40篇
  2016年   150篇
  2015年   112篇
  2014年   103篇
  2013年   123篇
  2012年   151篇
  2011年   198篇
  2010年   109篇
  2009年   78篇
  2008年   138篇
  2007年   127篇
  2006年   100篇
  2005年   107篇
  2004年   76篇
  2003年   51篇
  2002年   47篇
  2001年   12篇
  2000年   19篇
  1999年   12篇
  1998年   10篇
  1997年   5篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1989年   2篇
  1987年   4篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1967年   1篇
排序方式: 共有2252条查询结果,搜索用时 15 毫秒
61.
A phosphinine-borane adduct of a Me3Si-functionalized phosphinine and the Lewis acid B(C6F5)3 has been synthesized and characterized crystallographically for the first time. The reaction strongly depends on the nature of the substituents in the α-position of the phosphorus heterocycle. In contrast, the reaction of B2H6 with various substituted phosphinines leads to an equilibrium between the starting materials and the phosphinine–borane adducts that is determined by the Lewis basicity of the phosphinine. The novel phosphinine borane adduct ( 6 -B(C6F5)3) shows rapid and facile insertion and [4+2] cycloaddition reactivity towards phenylacetylene. A hitherto unknown dihydro-1-phosphabarrelene is formed with styrene. The reaction with an ester provides a new, facile and selective route to 1-R-phosphininium salts. These salts then undergo a [4+2] cycloaddition in the presence of Me3Si−C≡CH and styrene to cleanly form unprecedented derivatives of 1-R-phosphabarrelenium salts.  相似文献   
62.
The pollution of groundwater with nitrate is a serious issue because nitrate can cause several diseases such as methemoglobinemia or cancer. Therefore, selective removal of nitrate by efficient binding to supramolecular hosts is highly desired. Here we describe how to make [2+3] amide cages in very high to quantitative yields by applying an optimized Pinnick oxidation protocol for the conversion of corresponding imine cages. By NMR titration experiments of the eight different [2+3] amide cages with nitrate, chloride and hydrogen sulfate we identified one cage with an unprecedented high selectivity towards nitrate binding vs. chloride (S=705) or hydrogensulfate (S>13500) in CD2Cl2/CD3CN (1 : 3). NMR experiments as well as single-crystal structure comparison of host-guest complexes give insight into structure-property-relationships.  相似文献   
63.
In this work, we report the preparation of multiple interpnictogen chain compounds with three consecutive pnictogen atoms and terminal Ar2Bi fragments (Ar=Ph, Mes). Symmetrical compounds of the form Ar2Bi−E(tBu)−Bi2Ar ( 1 : Ar=Ph, E=P; 2 : Ar=Ph, Mes, E=As) as well as ternary interpnictogen compounds of the form Ar2Bi−E1(tBu)−E2tBu2 (Ar=Ph, Mes; 4 : E1=P, E2=As; 5 : E1=P, E2=Sb; 6 : E1=As, E2=P) were prepared. The decomposition in solution at room temperature and under the influence of light was studied for compounds 1 – 6 . The reactivity of 1Ph and 2Ph with the small N-heterocyclic carbene 1,3,4,5-tetramethylimidazol-2-ylidene (Me2IMe) was also studied. In the case of 1Ph , the formation and consecutive decomposition of Me2IMe=PtBu ( 8 ) was observed in solution. Hence, it was shown that 1Ph can react as a “masked phosphinidene”. In the case of 2Ph , no reaction with Me2IMe was observed. All isolated compounds were analysed by NMR and IR spectroscopy, mass spectrometry, elemental analysis and single-crystal X-ray diffraction.  相似文献   
64.
The identification and quantification of modified peptides are critical for the functional characterization of post-translational protein modifications (PTMs) to elucidate their biological function. Nowadays, quantitative mass spectrometry coupled with various bioinformatic pipelines has been successfully used for the determination of a wide range of PTMs. However, direct characterization of low abundant protein PTMs in bottom-up proteomic workflow remains challenging. Here, we present the synthesis and evaluation of tandem mass spectrometry tags (TMT) which are introduced via click-chemistry into peptides bearing alkyne handles. The fragmentation properties of the two mass tags were validated and used for screening in a model system and analysis of AMPylated proteins. The presented tags provide a valuable tool for diagnostic peak generation to increase confidence in the identification of modified peptides and potentially for direct peptide-PTM quantification from various experimental conditions.  相似文献   
65.
Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) identified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb. An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promising non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in future clinical studies, particularly for detection of lung injury.  相似文献   
66.
Hydrated aluminium cations have been investigated as a photochemical model system with up to ten water molecules by UV action spectroscopy in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Intense photodissociation was observed starting at 4.5 eV for two to eight water molecules with loss of atomic hydrogen, molecular hydrogen and water molecules. Quantum chemical calculations for n=2 reveal that solvation shifts the intense 3s–3p excitations of Al+ into the investigated photon energy range below 5.5 eV. During the photochemical relaxation, internal conversion from S1 to T2 takes place, and photochemical hydrogen formation starts on the T2 surface, which passes through a conical intersection, changing to T1. On this triplet surface, the electron that was excited to the Al 3p orbital is transferred to a coordinated water molecule, which dissociates into a hydroxide ion and a hydrogen atom. If the system remains in the triplet state, this hydrogen radical is lost directly. If the system returns to singlet multiplicity, the reaction may be reversed, with recombination with the hydroxide moiety and electron transfer back to aluminium, resulting in water evaporation. Alternatively, the hydrogen radical can attack the intact water molecule, forming molecular hydrogen and aluminium dihydroxide. Photodissociation is observed for up to n=8. Clusters with n=9 or 10 occur exclusively as HAlOH+(H2O)n-1 and are transparent in the investigated energy range. For n=4–8, a mixture of Al+(H2O)n and HAlOH+(H2O)n-1 is present in the experiment.  相似文献   
67.
A synthetic method for the palladium-catalyzed cyanation of aryl boronic acids using bench stable and non-toxic N-cyanosuccinimide has been developed. High-throughput experimentation facilitated the screen of 90 different ligands and the resultant statistical data analysis identified that ligand σ-donation, π-acidity and sterics are key drivers that govern yield. Categorization into three ligand groups – monophosphines, bisphosphines and miscellaneous – was performed before the analysis. For the monophosphines, the yield of the reaction increases for strong σ-donating, weak π-accepting ligands, with flexible pendant substituents. For the bisphosphines, the yield predominantly correlates with ligand lability. The applicability of the designed reaction to a wider substrate scope was investigated, showing good functional group tolerance in particular with boronic acids bearing electron-withdrawing substituents. This work outlines the development of a novel reaction, coupled with a fast and efficient workflow to gain understanding of the optimal ligand properties for the design of improved palladium cross-coupling catalysts.  相似文献   
68.
Bi2S3 was dissolved in the presence of either AuCl/PtCl2 or AgCl in the ionic liquids [BMIm]Cl ⋅ xAlCl3 (BMIm=1-n-butyl-3-methylimidazolium; x=4–4.3) through annealing the mixtures at 180 or 200 °C. Upon cooling to room temperature, orange, air-sensitive crystals of [BMIm](Bi4S4)[AlCl4]5 ( 1 ) or Ag(Bi7S8)[S(AlCl3)3]2[AlCl4]2 ( 2 ) precipitated, respectively. 1 did not form in the absence of AuCl/PtCl2, suggesting an essential role of the metal cations. X-ray diffraction on single-crystals of 1 revealed a monoclinic crystal structure that contains (Bi4S4)4+ heterocubanes and [AlCl4] tetrahedra as well as [BMIm]+ cations. The intercalation of the ionic liquid was confirmed via solid state NMR spectroscopy, revealing unusual coupling behavior. The crystal structure of 2 consists of (Bi7S8)5+ spiro-dicubanes, [S(AlCl3)3]2− tetrahedra triples, isolated [AlCl4] tetrahedra, and heavily disordered silver(I) cations. No cation ordering took place in 2 upon slow cooling to 100 K.  相似文献   
69.
Neutral [Ru(η6-arene)Cl2{Ph2P(CH2)3SPh-κP}] (arene = benzene, indane, 1,2,3,4-tetrahydronaphthalene: 2a, 2c and 2d) and cationic [Ru(η6-arene)Cl(Ph2P(CH2)3SPh-κPS)]X complexes (arene = mesitylene, 1,4-dihydronaphthalene; X = Cl: 3b, 3e; arene = benzene, mesitylene, indane, 1,2,3,4-tetrahydronaphthalene, and 1,4-dihydronaphthalene; X = PF6: 4a–4e) complexes were prepared and characterized by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy and also by single-crystal X-ray diffraction analyses. The stability of the complexes has been investigated in DMSO. Complexes have been assessed for their cytotoxic activity against 518A2, 8505C, A253, MCF-7 and SW480 cell lines. Generally, complexes exhibited activity in the lower micromolar range; moreover, they are found to be more active than cisplatin. For the most active ruthenium(II) complex, 4b, bearing mesitylene as ligand, the mechanism of action against 8505C cisplatin resistant cell line was determined. Complex 4b induced apoptosis accompanied by caspase activation.  相似文献   
70.
Three [1,3-diethyl-4-(p-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)imidazol-2-ylidene](L)gold(I) complexes, 4 a (L=Cl), 5 a (L=PPh3), and 6 a (L=same N-heterocyclic carbene (NHC)), and their fluorescent [4-(anthracen-9-yl)-1,3-diethyl-5-phenylimidazol-2-ylidene](L)gold(I) analogues, 4 b , 5 b , and 6 b , respectively, were studied for their localisation and effects in cancer cells. Despite their identical NHC ligands, the last three accumulated in different compartments of melanoma cells, namely, the nucleus ( 4 b ), mitochondria ( 5 b ), or lysosomes ( 6 b ). Ligand L was also more decisive for the site of accumulation than the NHC ligand because the couples 4 a / 4 b , 5 a / 5 b , and 6 a / 6 b , carrying different NHC ligands, afforded similar results in cytotoxicity tests, and tests on targets typically found at their sites of accumulation, such as DNA in nuclei, reactive oxygen species and thioredoxin reductase in mitochondria, and lysosomal membranes. Regardless of the site of accumulation, cancer cell apoptosis was eventually induced. The concept of guiding a bioactive complex fragment to a particular subcellular target by secondary ligand L could reduce unwanted side effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号