首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2096篇
  免费   150篇
  国内免费   6篇
化学   1551篇
晶体学   7篇
力学   43篇
数学   300篇
物理学   351篇
  2024年   2篇
  2023年   35篇
  2022年   50篇
  2021年   67篇
  2020年   120篇
  2019年   98篇
  2018年   40篇
  2017年   40篇
  2016年   150篇
  2015年   112篇
  2014年   103篇
  2013年   123篇
  2012年   151篇
  2011年   198篇
  2010年   109篇
  2009年   78篇
  2008年   138篇
  2007年   127篇
  2006年   100篇
  2005年   107篇
  2004年   76篇
  2003年   51篇
  2002年   47篇
  2001年   12篇
  2000年   19篇
  1999年   12篇
  1998年   10篇
  1997年   5篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1989年   2篇
  1987年   4篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1967年   1篇
排序方式: 共有2252条查询结果,搜索用时 0 毫秒
81.
New heterocyclic derivatives of 9‐azajulolidine have been synthesized and characterized with respect to their nucleophilicity and Lewis basicity. The Lewis basicity of these bases as quantified through their theoretically calculated methyl‐cation affinities correlate well with the experimentally measured reaction rates for addition to benzhydryl cations. All newly synthesized pyridines show exceptional catalytic activities in benchmark acylation reactions, which correlate only poorly with Lewis basicity or nucleophilicity parameters. A combination of Lewis basicity with charge and geometric parameters in the framework of a three‐component quantitative structure–activity relationship (QSAR) model is, however, highly predictive.  相似文献   
82.
Hepcidin-25 has been defined as the key biomarker in iron metabolism. This peptide binds to the iron transporter ferroportin to cause its degradation. Therefore, the need for specific, accurate and precise methods for the quantification of hepcidin-25 in biological fluids is dramatically increasing. In this regard, the use of rapid immunochemical methods that provide low limit of quantification is desired for routine clinical use. However, such fast methodologies should be first analytically evaluated and compared with alternative strategies to check for their advantages and limitations. Here we compare the use of a commercial immunochemical assay for hepcidin determination with a novel analytical approach based on Cu-labeling of the peptide followed by Cu determination using liquid chromatography (HPLC) and plasma mass spectrometry (ICP-MS). The figures of merit of both systems reveal similar analytical characteristics and both seem to be adequate for the determination of the peptide at biologically relevant concentrations in human serum samples. The analysis of a larger number of samples (n = 50) by both techniques showed a good agreement in the concentrations found. Such finding permits to address the hepcidin recovery in the sample preparation procedure necessary for the HPLC-ICP-MS analysis in human serum that turn out to be 76–85%. Additionally, limitations due to cross-reactivity issues of the ELISA method could be addressed in some of the samples by using LC-ICP-MS and were confirmed by LC-Electrospray-MS.  相似文献   
83.
1,4‐Diazidobuta‐1,3‐dienes (Z,Z)‐ 10 , 17 , and 21 were photolyzed and thermolyzed to yield the pyridazines 13 , 20 , and 23 , respectively. To explain these aromatic final products, the generation of highly strained bi‐2H‐azirin‐2‐yls 12 , 19 , and 22 and their valence isomerization were postulated. In the case of meso‐ and rac‐ 22 , nearly quantitative formation from diazide 21 , isolation as stable solids, and complete characterization were possible. On the thermolysis of 22 , aromatization to 23 was only a side reaction, whereas equilibration of meso‐ and rac‐ 22 and fragmentation, which led to alkyne 24 and acetonitrile, dominated. Prolonged irradiation of 22 gave mainly the pyrimidine 25 . The change of the configuration at C‐2 of the 2H‐azirine unit was observed not only in the case of bi‐2H‐azirin‐2‐yls 22 but also for simple spirocyclic 2H‐azirines 29 at a relatively low temperature (75 °C). The fragmentation of rac‐ 22 to give alkyne 24 and two molecules of acetonitrile was also studied by high‐level quantum chemical calculations. For a related model system 30 (methyl instead of phenyl groups), two transition states TS‐ 30 – 31 of comparable energy with multiconfigurational electronic states could be localized on the energy hypersurface for this one‐step conversion. The symmetrical transition state complies with the definition of a coarctate mechanism.  相似文献   
84.
The synthesis, crystal structure and magnetic characterisation by magnetisation and inelastic neutron scattering (INS) of a mixed-valent Mn(10) supertetrahedral aggregate [Mn(III)(6)Mn(II)(4)(μ(4)-O)(4)(μ(3)-N(3))(3)(μ(3)-Br)(Hmpt)(6)(Br)]Br(0.7)(N(3))(0.3)·2MeOH·3MeCN (1) (H(3)mpt=3-methylpentan-1,3,5-triol) is reported. The magnetic core of the molecule can be described as an octahedron of six S=2 Mn(III) ions with four faces, each capped by a S=5/2 Mn(II) ion such as to form the supertetrahedron. Unlike most related complexes, the molecular symmetry is slightly reduced from approximately T(d) to C(3). The magnetic data reveal a total spin of S=22 in the ground state due to ferromagnetic exchange couplings within the molecule. The combined INS and magnetic data permits the accurate determination of the exchange coupling constants. Two types are found. The couplings between the Mn(III) ions in the inner octahedron are characterised by J(a)=18.4(3) K, whereas the couplings between the apical Mn(II) ions to the neighbouring Mn(III) ions are given by J(b)=7.3(2) K. The significantly larger coupling strength J(a) as compared to J(b), and the near-T(d) symmetry have profound consequences on the energy spectrum, which are discussed and carefully analysed. In particular, the observed INS spectra can consistently be reproduced by a simplified model in which the inner octahedron is replaced by one large spin of length S(0)=12. This model provides intuitive insight into the structure of the magnetic spectrum. Additionally, the magnetic excitations at low temperature are analysed within the frame of ferromagnetic linear spin-wave theory, which permits an analytical calculation of the energy levels. For ferromagnetic clusters, a close analogy to the Hückel method of electronic structure calculation can be drawn, which allows one to grasp the results of the spin-wave theory or the magnetic excitation spectrum, respectively, in a chemical language.  相似文献   
85.
86.
Germanium nanowires, ranging from 10 to 150 nm in diameter, were grown several micrometers in length in cyclohexane heated and pressurized above its critical point. Alkanethiol-protected gold nanocrystals, either 2.5 or 6.5 nm in diameter, were used to seed wire formation. Growth proceeded through a solution-liquid-solid mechanism at growth temperatures ranging from 300 to 450 degrees C. At temperatures exceeding 500 degrees C, large Ge particulates formed due to unfavorable growth kinetics. Temperature, the nature of the precursor, precursor concentration, and the Au:Ge ratio were determining factors in nanowire morphology. The Ge nanowires were characterized using a range of techniques, including XPS, XRD, high-resolution TEM and SEM, nanometer-scale EDS mapping, and DTA.  相似文献   
87.
Solution-grown single-crystal Ge nanowires were used as conductive channels in field effect transistor devices to study the influence of surface states on their electron transport properties. Nanowires contacted with Pt electrodes using focused ion beam metal deposition exhibited linear current-voltage (IV) curves at room temperature with apparent resistivities ranging from 10(1) to 10(-1) Omega cm. In all cases, the nanowire conductance decreased with positive external electric fields applied perpendicular to the nanowire surface by a gate electrode, characteristic of p-type carrier accumulation at the nanowire surface. The field-induced change in conductance exhibited a time-dependent relaxation, with response time and magnitude of current decrease that depended on the nanowire surface chemistry. Nanowires treated with an organic passivation layer using a thermally initiated hydrogermylation reaction exhibited 2 orders of magnitude slower current relaxation and a smaller decrease in current relative to "bare" nanowires with oxidized surfaces.  相似文献   
88.
A reliable and easy to use liquid chromatography/tandem mass spectrometry (LC/MS/MS) method without the use of sample extraction was developed for the simultaneous quantification of urinary concentrations of mephenytoin, a standard phenotyping substrate for the cytochrome P450 enzyme CYP2C19, and its phase I metabolites 4'-hydroxymephenytoin and nirvanol. Fifty microL of urine were diluted with a buffered beta-glucuronidase solution and incubated at 37 degrees C for 6 h followed by addition of methanol, containing the internal standard 4'-methoxymephenytoin. The chromatographic separation was achieved using a 100 x 3 mm, 5 micro Thermo Electron Aquasil C18 column with a gradient flow, increasing the organic fraction (acetonitrile/methanol 50:50) of the mobile phase from 10 to 90%. Quantification by triple-stage mass spectrometry (TSQ Quantum, Thermo Electron) was accomplished by negative electrospray ionization in the selected reaction monitoring mode. Linearity was observed for all substances in the concentration range 15-10 000 ng/mL. The lower limit of quantification (LLOQ) was 20 ng/mL for 4'-hydroxymephenytoin and 30 ng/mL for nirvanol and mephenytoin, respectively. Intra- and inter-day inaccuracy did not exceed 9.5% for all substances from LLOQ to 10 000 ng/mL. Intra- and inter-day precision were in the range of 0.8-10.5%. The method was validated according to international ICH and FDA guidelines and successfully applied for phenotyping of Caucasian male volunteers who received an oral dose of 50 mg mephenytoin.  相似文献   
89.
The spectroscopic properties for seven different commercial resins used in solid-phase synthesis were investigated with (19)F NMR spectroscopy. A fluorine-labeled dipeptide was synthesized on each resin, and the resolution of the (19)F resonances in CDCl(3), DMSO-d(6), benzene-d(6) and CD(3)OD were measured with a conventional NMR spectrometer, i.e. without using magic angle spinning. In general, resins containing poly(ethylene glycol) chains (ArgoGel, TentaGel and PEGA) were found to be favorable for the (19)F NMR spectral quality. Three serine containing tri-, penta-, and heptapeptides were then prepared on an ArgoGel resin functionalized with a fluorine-labeled linker. The resin bound peptides were glycosylated utilizing a thiogalactoside glycosyl donor carrying fluorine-labeled protective groups. Monitoring of the glycosylations with gel-phase (19)F NMR spectroscopy allowed each glycopeptide to be formed in similar 80% yield, using a minimal amount of glycosyl donor (3 x 2 equivalents). In addition, it was found that the glycosylation yields were independent of peptide length.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号