Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of ?20 GeV/c we obtained $10^6 \bar p, 10^3 \bar d$ and two $\overline {^3 He} $ without centrality requirements. We measured nuclei and antinuclei (p, d, $\bar p,\bar d$ ) near midrapidity covering an impact parameter range of b ~ 2–12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However, the centrality dependence of the antibaryon to baryon ratios shows that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an expanding source. The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide with each other and with the thermal freeze-out of hadrons. 相似文献
Today, flexible vacuum packages are predominantly used for products to be subjected to high pressure treatment. However, tray packages with a modified atmosphere are in demand, which provide a high failure rate with respect to gas and water vapour permeability and packaging integrity. Methods to follow permeation processes under high pressure were developed and used together with optical microscopy, confocal scanning laser microscopy, Raman spectroscopy and atomic force microscopy to identify the mechanisms for changes in permeability and damage to the packaging materials. Single film samples and pouch packages filled with model products were studied. Results indicate a reversible decrease in the coefficients of diffusion and permeation under the impact of high pressure, due to the compression of the polymeric bulk. Irreversible changes in the polymeric materials are associated with gases in the packaging head space, which cause high local temperatures and create damage due to rapid deliberation upon the pressure drop at the end of the high pressure cycle. 相似文献
We discuss a subtlety involved in the calculation of multifractal spectra when these are expressed as Legendre-Fenchel transforms of functions analogous to free energy functions. We show that the Legendre-Fenchel transform of a free energy function yields the correct multifractal spectrum only when the latter is wholly concave. If the spectrum has no definite concavity, then the transform yields the concave envelope of the spectrum rather than the spectrum itself. Some mathematical and physical examples are given to illustrate this result, which lies at the root of the nonequivalence of the microcanonical and canonical ensembles. On a more positive note, we also show that the impossibility of expressing nonconcave multifractal spectra through Legendre-Fenchel transforms of free energies can be circumvented with the help of a generalized free energy function, which relates to a recently introduced generalized canonical ensemble. Analogies with the calculation of rate functions in large deviation theory are finally discussed.
PACS numbers: 05.45.Df, 64.60.Ak, 65.40.Gr 相似文献
The Linear Search Problem concerns a search for a point in the real line by continuous motion starting at 0. The optimal turning
points for such a search under the hypothesis that the location of the target is distributed normally about 0 have been approximated
by mechanical calculation, but no proof has been given that there is only a single minimizing strategy or that the numbers
calculated do indeed approximate that strategy. Plausible arguments have been made before, both by these authors and others.
In this paper, the plausible arguments are supplanted by mathematical proofs.
The research of the senior author has been supported by the Wisconsin Alumni Research Foundation.
The research of the junior author has been supported by Hewlett Packard, Inc. under a Faculty Development Fellowship at Cornell
University. 相似文献
A theory of random small-angle scattering is presented. The photon dispersion partial differential equation is derived and the dispersion coefficient characterizing the medium is introduced. The equation is solved for a spatial impulse. The modulation transfer function and the contrast loss are derived as a funcion of spatial frequency, dispersion coefficient, and object-to-image distance. The limitation on resolution is shown by an indeterminancy relation based on the dispersion coefficient. The dispersion angle (rms value of scattering angle) is calculated as an example. 相似文献
High-dimensional partial differential equations (PDEs) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work, we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (1) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (2) a merged formulation of the PDE and the 2BSDE problem, (3) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (4) a stochastic gradient descent-type optimization procedure. Numerical results obtained using TensorFlow in Python illustrate the efficiency and the accuracy of the method in the cases of a 100-dimensional Black–Scholes–Barenblatt equation, a 100-dimensional Hamilton–Jacobi–Bellman equation, and a nonlinear expectation of a 100-dimensional G-Brownian motion.
The chromophore class of 1,3,8,10-tetrasubstituted peropyrenes was effectively synthesized from peropyrenequinone via a Zn-mediated reductive aromatization approach. In one step, a symmetric functionalization of the peropyrene backbone introducing silylethers ( 2 , 3 ), pivaloyl ( 4 ), triflyl ( 5 ) and also phosphinite ( 6 ) groups was established. Furthermore, the potential of using 4 and 5 in transition metal catalysed cross couplings was explored leading to 1,3,8,10-tetraaryl ( 8 - 11 ) and tetraalkynyl ( 7 ) peropyrenes. The influence of various substituents on the optoelectronic properties of these π-system extended peropyrenes was investigated in solid state by means of X-ray crystallography, in solution by means of UV-Vis and fluorescence spectroscopy and by their redox properties studied via cyclic voltammetry. By comparison with DFT and TD-DFT calculations, it could be elucidated that introduction of a broad variety of substituents in such versatile one or two step procedures leads to peropyrenes with easily tunable HOMO and LUMO energies ranging in a gap window of 0.8 eV. The frontier molecular orbital energies identify the target molecules as promising candidates for hole transporting semiconductors. 相似文献
A six-step synthesis towards a tribenzotriquinacene (TBTQ) bearing three quinoxalinophenanthrophenazine (QPP) units is presented. The optoelectronic properties are investigated and the effect of the three-dimensional arrangement of the individual QPP planes is examined using optical spectroscopy, electrochemical analysis and quantum-chemical calculations. 相似文献
Nitrogen‐doped reduced graphene oxide (N‐doped RGO) samples with a high level of doping, up to 13 wt. %, have been prepared by annealing graphene oxide under a flow of pure ammonia. The presence of nitrogen within the structure of RGO induces a remarkable increase in the thermal stability against oxidation by air. The thermal stability is closely related with the temperature of synthesis and the nitrogen content. The combustion reaction of nitrogen in different coordination environments (pyridinic, pyrrolic, and graphitic) is analyzed against a graphene fragment (undoped) from a thermodynamic point of view. In agreement with the experimental observations, the combustion of undoped graphene turns out to be more spontaneous than when nitrogen atoms are present. 相似文献