首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
化学   51篇
  2021年   1篇
  2016年   5篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
31.
Two derivatives of p-tert-butylcalix[4]arenes 1 and 2 containing diethyl ester and amidoferrocene units as cation and anion binding sites, respectively, have been synthesized. Both compounds were isomeric with different topology for accommodating ions. 1H NMR spectroscopy, cyclic voltammetry, and square-wave voltammetry were used to study the binding abilities of receptors 1 and 2 toward anions. Both receptors were found to bind Br and I selectively in the presence of Na+. The electrochemically oxidized ferrocenium form of para-isomer 2 in the free form was found to sense AcO selectively, but demonstrated a negative sensing in the presence of Na+. In contrast, the electrochemically oxidized ferrocenium form of meta-isomer 1 was found to enhance sensing of AcO and Cl in the presence of Na+.  相似文献   
32.
Journal of Solid State Electrochemistry - The effect of polyaspartate (PASP) on the gel properties and performance of gel valve-regulated lead-acid (VRLA) batteries is reported. The presence of...  相似文献   
33.
Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.  相似文献   
34.
A flow injection with pulsed amperometric detection for determination of doxycycline or chlortetracycline in pharmaceutical formulations is described. Doxycycline or chlortetracycline were studied at a gold rotating disk electrode with cyclic voltammetry as a function of pH of supporting electrolyte solution. The optimized PAD waveform parameters were obtained with a flow injection system. The optimized pulsed conditions of doxycycline were 1150 mV (versus Ag/AgCl reference electrode) detection potential (Edet) for 220 ms (150 ms delay time and 70 ms integration time), 1500 mV (versus Ag/AgCl reference electrode) oxidation potential (Eoxd) for 70 ms oxidation time (toxd) and 250 mV (versus Ag/AgCl reference electrode) reduction potentail (Ered) for 400 ms reactivation time (tred). The optimized pulsed conditions of chlortetracycline were 1050 mV (versus Ag/AgCl reference electrode) detection potential (Edet) for 300 ms (200 ms delay time and 100 ms integration time), 1300 mV (versus Ag/AgCl reference electrode) oxidation potential (Eoxd) for 70 ms oxidation time (toxd) and 250 mV (versus Ag/AgCl reference electrode) reduction potentail (Ered) for 400 ms reactivation time (tred). The optimized PAD waveform was applied to the determination of doxycycline hydrochloride and chlortetracycline hydrochloride standard solution and in pharmaceutical formulations. The linear dynamic ranges of doxycycline hydrochloride and chlortetracycline hydrochloride were 1 μM–0.1 mM. The sensitivity of this method was found to be 23 μA/mM for doxycycline hydrochloride and 33.76 μA/mM for chlortetracycline hydrochloride. The detection limit for both compounds is 1 μM. The doxycycline hydrochloride and chlortetracycline hydrochloride content in commercially available tablet dosage forms by the proposed method was comparable to those specified by the manufacturer.  相似文献   
35.
A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H2O2 produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL−1 to 270.69 mg dL−1), low detection limit (0.25 mg dL−1), and high sensitivity (49.61 μA mM−1 cm−2). The precision value for ten replicates was 3.76% RSD for 1 mM H2O2. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6–100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time.  相似文献   
36.
With recent advances in nanotechnology making more easily available the novel chemical and physical properties of metal nanoparticles (NPs), these have become extremely suitable for creating new sensing assays. Many kinds of NPs, including metal, metal-oxide, semiconductor and even composite-metal NPs, have been used for constructing electrochemical sensors. This article reviews the progress of NP-based electrochemical detection in recent applications, especially in bioanalysis, and summarizes the main functions of NPs in conventional and miniaturized systems. All references cited here generally show one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous-detection capabilities.  相似文献   
37.
The present work describes the fabrication of paper‐based analytical devices (μPADs) by immobilization of glucose oxidase onto the screen printed carbon electrodes (SPCEs) for the electrochemical glucose detection. The sensitivity towards glucose was improved by using a SPCE prepared from homemade carbon ink mixed with cellulose acetate. In addition, 4‐aminophenylboronic acid (4‐APBA) was used as a redox mediator giving a lower detection potential for improvement selectivity. Under optimized condition, the detection limit was 0.86 mM. The proposed device was applied in real samples. This μPAD has many advantages including low sample consumption, rapid analysis method, and low device cost.  相似文献   
38.
Bis(calix[4]diquinones) 1 and 2 and double calix[4]diquinone 3 have been synthesized from their corresponding double calix[4]arenes 4, 5, and 6, respectively. Compounds 4-6 have been prepared from one-pot and stepwise syntheses under high pressure. Complexation studies of ligands 1-3 with alkali metal ions such as Li+, Na+, K+, and Cs+ were carried out by 1H NMR titrations. Receptors 1 can selectively form 1:1 complexes with Na+. Ligand 2 prefers to form 1:1 complexes with K+ and Cs+. Receptor 3 retained the cone conformation of the calix[4]arene unit upon binding K+ but changed the conformation when complexing Li+ and Na+. Electrochemical studies using cyclic voltammetry and square wave voltammetry showed significant changing of voltammograms of 2 and 3 in the presence of alkali metal ions. Receptor 3 showed the electrochemically switched binding property toward Na+ and K+.  相似文献   
39.
The electrochemical oxidation of homocysteine was studied at as-deposited and anodized (oxidized) boron-doped diamond (BDD) thin film electrodes with cyclic voltammetry, flow injection analysis and high-pressure liquid chromatography with amperometric detection. At anodized boron-doped diamond electrodes, highly reproducible, well-defined cyclic voltammograms for homocysteine oxidation were obtained in acidic media, while as-deposited diamond did not provide a detectable signal. In alkaline media, however, the oxidation response was obtained both at as-deposited and anodized diamond electrodes. The potential sweep rate dependence of homocysteine oxidation (peak currents for 1 mM homocysteine linearly proportional to v(1/2), within the range of 0.01 to 0.3 V s(-1)) indicates that the oxidation involves a diffusing species, with negligible adsorption on the BDD surface at this concentration. In the flow system, BDD exhibited a highly reproducible amperometric response, with a peak variation less than 2%. An extremely low detection limit (1 nM) was obtained at 1.6 V vs. Ag/AgCl. In addition, the determination of homocysteine in a standard mixture with aminothiols and disulfide compounds by means of isocratic reverse-phase HPLC with amperometric detection at diamond electrodes has been investigated. The results showed excellent separation, with a detection limit of 1 pmol and a linear range of three orders of magnitude.  相似文献   
40.
Ruecha N  Siangproh W  Chailapakul O 《Talanta》2011,84(5):1323-1328
In this work, the rapid detection of cholesterol using poly(dimethylsiloxane) microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, was developed. Direct amperometric detection for poly(dimethylsiloxane) (PDMS) microchip capillary electrophoresis was successfully applied to quantify cholesterol levels. Factors influencing the performance of the method (such as the concentration and pH value of buffer electrolyte, concentration of cholesterol oxidase enzyme (ChOx), effect of solvent on the cholesterol solubility, and interferences) were carefully investigated and optimized. The migration time of hydrogen peroxide, product of the reaction, was less than 100 s when using 40 mM phosphate buffer at pH 7.0 as the running buffer, a concentration of 0.68 U/mL of the ChOx, a separation voltage of +1.6 kV, an injection time of 20 s, and a detection potential of +0.5 V. PDMS microchip capillary electrophoresis showed linearity between 38.7 μg/dL (1 μM) and 270.6 mg/dL (7 mM) for the cholesterol standard; the detection limit was determined as 38.7 ng/dL (1 nM). To demonstrate the potential of this assay, the proposed method was applied to quantify cholesterol in bovine serum. The percentages of recoveries were assessed over the range of 98.9-101.8%. The sample throughput was found to be 60 samples per hour. Therefore, PDMS microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, is very rapid, accurate and sensitive method for the determination of cholesterol levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号