排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.
Wonsawat W Dungchai W Motomizu S Chuanuwatanakul S Chailapakul O 《Analytical sciences》2012,28(2):141-146
A low-cost thin-layer electrochemical flow-through cell based on a carbon paste electrode (CPE), was constructed for the highly sensitive determination of cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)) ions. The sensitivity of the proposed cell for Cd(2+) and Pb(2+) ion detection was improved by using the smallest channel height without the need for any complicated electrode modification. Under the optimum conditions, the detection limits of Cd(2+) and Pb(2+) ions (0.08 and 0.07 μg dm(-3), respectively) were 13.8- and 11.4-fold lower than that of a commercial flow cell (1.1 and 0.8 μg dm(-3), respectively). Moreover, the percentage recoveries of Cd(2+) and Pb(2+) for the in-house designed thin-layer flow cell were higher than those for the commercially available cell in all tested water samples, and within the acceptable range. The proposed flow cell is promising as an inexpensive and alternative one for the highly sensitive monitoring of heavy metal ions. 相似文献
22.
The electroanalysis of d-penicillamine in 0.1 phosphate buffer (pH 7) was studied at a boron-doped diamond thin film (BDD) electrode using cyclic voltammetry as a function of concentration of analyte and pH of analyte solution. Comparison experiments were performing using a glassy carbon (GC) electrode. The BDD electrode exhibited a well-resolved and irreversible oxidation voltammogram, but the GC electrode provided only an ill-defined response. The BDD electrode provided a linear dynamic range from 0.5 to 10 mM and a detection limit of 25 muM (S/B>/=3) in voltammetric measurement. It was also found that the peak potentials were decreased when the pH of the analyte solution was increased. In addition, penicillamine has been studied by hydrodynamic voltammetry and flow injection analysis with amperometric detection using the BDD electrode. The flow injection analysis results at the diamond electrode indicated a linear dynamic range from 0.5 to 50 muM and a detection limit of 10 nM (S/N approximately 4). The proposed method was applied to determine d-penicillamine in dosage form (capsules), the results obtained in the recovery study (255+/-2.50 mg per tablet) were comparable to those labeled (250 mg per tablet). 相似文献
23.
Kriengkamol TantrakarnChalita Ratanatawanate Tipsukhon PinsukOrawon Chailapakul Thawatchai Tuntulani 《Tetrahedron letters》2003,44(1):33-36
Biscalix[4]arenes, 7 and 8, have been synthesized by a one-pot coupling method and a stepwise approach, respectively. One-pot reaction in a pressurized vessel resulted in the symmetric biscalix[4]arene 7 in high yield. Oxidation of compounds 7 and 8 by Tl(CO2CF3)3 in CF3COOH yielded biscalix[4]quinones, 9 and 10, respectively. Preliminary electrochemical studies by cyclic voltammetry of 9 and 10 show significant changes of their voltammograms upon addition of Na+. 相似文献
24.
A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s−1. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL−1 and 5.0–60.0 ng mL−1). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL−1. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL−1, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level. 相似文献
25.
Ultrasensitive and Simple Method for Determination of N‐Acetyl‐L‐Cysteine in Drug Formulations Using a Diamond Sensor 下载免费PDF全文
A boron‐doped diamond (BDD) electrode coupled to flow injection analysis (FIA) was firstly developed for determination of N‐acetyl‐L ‐cysteine (NAC) in drug formulations. The effects of experimental parameters including pH, applied potential and scan rate on the response were investigated. FIA amperometry was applied as an automatic method for the quantitative detection of trace amounts of NAC. A wide linear range of 0.5–50 µmol/L and a low detection limit of 10 nmol/L were obtained. The results of amperometric determinations show a very good reproducibility, and the RSD for the measurement based on 10 measurements was <3.7 % and <4.1 % for intra‐ and inter‐day, respectively. The benefits of the proposed method are fast, simple, sensitive and no requirement of complicated operational steps. 相似文献
26.
Paper-based microfluidic devices are an alternative technology for fabricating simple, low-cost, portable and disposable platforms for clinical diagnosis. Hereby, a novel wax dipping method for fabricating paper-based microfluidic devices (μPADs) is reported. The iron mould for wax dipping was created by a laser cutting technique. The designed pattern was transferred onto paper by dipping an assembly mould into melted wax. The optimal melting temperature and dipping time were investigated. The optimal melting temperature was in the range of 120-130 °C, and the optimal dipping time was 1 s. The whole fabrication process could be finished within 1 min without the use of complicated instruments or organic solvents. The smallest hydrophilic channel that could be created by the wax dipping method was 639 ± 7 μm in size. The reproducibility of the μPAD fabrication for hydrophilic channel width of the test zone and sample zone was 1.48% and 6.30%, respectively. To verify the performance of the μPAD, multiple colorimetric assays for simultaneous detection of glucose and protein in real samples were performed. An enzymatic assay and the bromocresol green (BCG) method were conducted on the paper device to determine the presence of glucose and protein in a test solution. The results of the assays were not significantly different from those of the conventional methods (p > 0.05, pair t-test and one-way ANOVA method). The wax dipping provides a new alternative method for fabricating lab-on-paper devices for multiple clinical diagnostics and will be very beneficial for developing countries. 相似文献
27.
Boonsong K Caulum MM Dressen BM Chailapakul O Cropek DM Henry CS 《Electrophoresis》2008,29(15):3128-3134
The effect of successive multiple ionic layer (SMIL) coatings on the velocity and direction of EOF and the separation efficiency for PDMS electrophoresis microchips was studied using different polymer structures and deposition conditions. To date, the majority of SMIL studies have used traditional CE and fused-silica capillaries. EOF was measured as a function of polymer structure and number of layers, in one case using the same anionic polymer and varying the cationic polymer and in the second case using the same cationic polymer and varying the anionic polymer. In both situations, the EOF direction reversed with each additional deposited polymer layer. The absolute EOF magnitude, however, did not vary significantly with layer number or polymer structure. Next, different coatings were used to compare separation efficiencies on native and SMIL-coated PDMS microchips. For native PDMS microchips, the average separation efficiency was 4105 +/- 1540 theoretical plates. The addition of two layers of polymer increased the separation efficiency anywhere from two- to five-fold, depending on the polymer structure. A maximum separation efficiency of 12 880 +/- 1050 theoretical plates was achieved for SMIL coatings of polybrene (cationic) and dextran sulfate (anionic) polymers after deposition of six total layers. It was also noted that coating improved run-to-run consistency of the peaks as noted by a reduction of the RSD of the EOF and separation efficiency. This study shows that the use of polyelectrolyte coatings, irrespective of the polymer structure, generates a consistent EOF in the current experiments and dramatically improves the separation efficiency when compared to unmodified PDMS microchips. 相似文献
28.
Passapol Ngamukot Thiraporn Charoenraks Orawon Chailapakul Shoji Motomizu Suchada Chuanuwatanakul 《Analytical sciences》2006,22(1):111-116
An electrooxidation and a cost-effective flow-based analysis of malachite green (MG) and leucomalachite green (LMG) were investigated at a boron-doped diamond thin-film (BDD) electrode. Cyclic voltammetry as a function of the pH of the supporting electrolyte solution was studied. Comparison experiments were performed with a glassy carbon electrode. A well-defined cyclic voltammogram, providing the highest peak current, was obtained when using phosphate buffer at pH 2. The potential sweep-rate dependence of MG and LMG oxidation (peak currents for 1 mM MG and LMG linearly proportional to v 1/2, within the range of 0.01 to 0.3 V/s) indicates that the oxidation current is a diffusion-controlled process on the BDD surface. In addition, hydrodynamic voltammetry and amperometric detection using the BDD electrode combined with a flow injection analysis system was also studied. A homemade flow cell was used, and the results were compared with a commercial flow cell. A detection potential of 0.85 V was selected when using a commercial flow cell, at which MG and LMG exhibited the highest signal-to-background ratios. For the homemade flow cell, a detection potential of 1.1 V was chosen because MG and LMG exhibited a steady response. The flow analysis results showed linear concentration ranges of 1-100 microM and 4-80 microM for MG and LMG, respectively. The detection limit for both compounds was 50 nM. 相似文献
29.
A method using flow injection (FI) with amperometric detection at anodized boron-doped diamond (BDD) thin films has been developed and applied for the determination of tetracycline antibiotics (tetracycline, chlortetracycline, oxytetracycline and doxycycline). The electrochemical oxidation of the tetracycline antibiotics was studied at various carbon electrodes including glassy carbon (GC), as-deposited BDD and anodized BDD electrodes using cyclic voltammetry. The anodized BDD electrode exhibited well-defined irreversible cyclic voltammograms for the oxidation of tetracycline antibiotics with the highest current signals compared to the as-deposited BDD and glassy carbon electrodes. Low detection limit of 10 nM (signal-to-noise RATIO = 3) was achieved for each drug when using flow injection analysis with amperometric detection at anodized BDD electrodes. Linear calibrations were obtained from 0.1 to 50 mM for tetracycline and 0.5–50 mM for chlortetracycline, oxytetracycline and doxycycline. The proposed method has been successfully applied to determine the tetracycline antibiotics in some drug formulations. The results obtained in percent found (99.50–103.01%) were comparable to dose labeled. 相似文献
30.
Vickers JA Dressen BM Weston MC Boonsong K Chailapakul O Cropek DM Henry CS 《Electrophoresis》2007,28(7):1123-1129
Microchip CE coupled with electrochemical detection (MCE-EC) is a good method for the direct detection of many small molecule analytes because the technique is sensitive and readily miniaturized. Polymer materials are being increasingly used with MCE due to their affordability and ease of fabrication. While PDMS has become arguably the most widely used material in MCE-EC due to the simplicity of microelectrode incorporation, it suffers from a lack of separation efficiency, lower surface stability, and a tendency for analyte sorption. Other polymers, such as poly(methylmethacrylate) (PMMA) and poly(carbonate) (PC), have higher separation efficiencies but require more difficult fabrication techniques for electrode incorporation. In this report, thermoset polyester (TPE) was characterized as an alternative material for MCE-EC. TPE microchips were characterized in their native and plasma oxidized forms and after coating with polyelectrolyte multilayers (PEMs). TPE provides higher separation efficiencies when compared to PDMS microchips, while still using simple fabrication protocols. In this work, separation efficiencies as high as 295,000 N/m were seen when using TPE MCE-EC devices. Furthermore, the EOF was higher and more consistent as a function of pH for both native and plasma-treated TPE than PDMS. Finally, TPE is amenable to modification using simple PEM coatings as another way to control surface chemistry and surface charge. 相似文献