首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   24篇
  国内免费   2篇
化学   438篇
晶体学   4篇
力学   11篇
数学   60篇
物理学   87篇
  2023年   2篇
  2022年   15篇
  2021年   23篇
  2020年   12篇
  2019年   23篇
  2018年   21篇
  2017年   6篇
  2016年   18篇
  2015年   24篇
  2014年   26篇
  2013年   51篇
  2012年   54篇
  2011年   47篇
  2010年   34篇
  2009年   22篇
  2008年   35篇
  2007年   29篇
  2006年   27篇
  2005年   22篇
  2004年   21篇
  2003年   17篇
  2002年   23篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   4篇
  1980年   2篇
排序方式: 共有600条查询结果,搜索用时 15 毫秒
101.
The authors report here the implementation of a newly developed, highly efficient matrix diagonalization routine in the DR program [T. E. Odaka et al., J. Mol. Struct. 795, 14 (2006)]. The DR program solves the rovibronic Schrodinger equation for a triatomic molecule with a double Renner effect, i.e., with two accessible linear arrangements of the nuclei at which the electronic energy is doubly degenerate. With the new routines, the authors can extend the DR calculations of rovibronic energies for A 2Pi MgNC/MgCN by considering a much larger set of rovibronic states, in particular, states at higher J values, than the authors were able to access previously.  相似文献   
102.
103.
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive—in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.  相似文献   
104.
105.
Unraveling the complex, competing pathways that can govern reactions in multicomponent systems is an experimental and technical challenge. We outline and apply a novel analytical toolkit that fully leverages the synchronicity of multimodal experiments to deconvolute causal from correlative relationships and resolve structural and chemical changes in complex materials. Here, simultaneous multimodal measurements combined diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and angular dispersive X-ray scattering suitable for pair distribution function (PDF), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) analyses. The multimodal experimental data was interpreted via multi-level analysis; conventional analyses of each data series were integrated through meta-analysis involving non-negative matrix factorization (NMF) as a dimensional reduction algorithm and correlation analysis. We apply this toolkit to build a cohesive mechanistic picture of the pathways governing silver nanoparticle formation in zeolite A (LTA), which is key to designing catalytic and separations-based applications. For this Ag-LTA system, the mechanisms of zeolite dehydration, framework flexing, ion reduction, and cluster and nanoparticle formation and transport through the zeolite are elucidated. We note that the advanced analytical approach outline here can be applied generally to multimodal experiments, to take full advantage of the efficiencies and self-consistencies in understanding complex materials and go beyond what can be achieved by conventional approaches to data analysis.

Multimodal in situ experimental data probing a complex reaction have been integrated via a multi-level analysis involving non-negative matrix factorization and correlation analysis. This strategy can be applied generally to multimodal experiments.  相似文献   
106.
Chemical and Cyclovoltammetric Investigation of the Redoxreactions of the Decahalodecaborates closo ‐[B10X10]2– and hypercloso ‐[B10X10]· – (X = Cl, Br)1). Crystal Structure Analysis of Cs2[B10Br10] · 2 H2O The oxidation of the decachloro‐closo‐decaborates(2–) Cs2[B10Cl10] or [Me4N]2[B10Cl10] with Tl(CF3COO)3 leads to the corresponding radical monoanion hypercloso‐[B10Cl10] · –, which was characterized by ESR and UV/Vis spectroscopy. [B10Cl10] · – does not dimerize like [B10H10] · – but it is reduced by acetonitrile to the dianion [B10Cl10]2–. Cs2[B10Cl10] reacts with stronger oxidation agents like CoF3 (in dichloromethane) or XeF2 (in perfluorhexane), respectively, to yield B9Cl9 and, in traces, B8Cl8. In opposite to this, the decabromoderivative Cs2[B10Br10] does not show any reaction with Tl(CF3COO)3 in acetonitrile or with CoF3 in CH2Cl2. The oxidation of the dianions [B10X10]2– (X = Cl, Br) was studied by electroanalytical methods (cyclic voltammetry, chronoamperometry, chronocoulometry). Formal potentials were determined for the two steps of the reaction, which do not seem to be affected by structural rearrangements. The crystal structure of Cs2[B10Br10] · 2 H2O was analyzed by single‐crystal X‐ray diffraction. Cs2[B10Br10] · 2 H2O crystallizes monoclinic (space group I2/a, (no. 15), Z = 8, a = 1361.54(9) pm, b = 1215.89(5) pm, c = 3108.4(2) pm, α = 90°, β = 97.916(8)°, γ = 90°). The closo‐cluster B10Br102– has a bicapped square antiprismatic structure with idealized D4d symmetry.  相似文献   
107.
A simple and efficient procedure for the preparation of silica-bonded S-sulfonic acid (SBSSA) by reaction of 3-mercaptopropylsilica (MPS) and chlorosulfonic acid in chloroform is described. This solid acid is employed as a recyclable catalyst for the synthesis of 1,1-diacetates from aromatic aldehydes and acetic anhydride under mild and solvent-free conditions at room temperature.  相似文献   
108.
A high-performance liquid chromatography coupled with diode array detector and mass spectrometry (HPLC-DAD-MS) method was developed to evaluate the quality of Rhizoma Belamcandae (Belamcanda chinensis (L.) DC.) through establishing chromatographic fingerprint and simultaneous determination of seven phenolic compounds. The analysis was achieved on an Alltima C(18) analytical column (250 mm x 4.6 mm i.d. 5 microm) using linear gradient elution of acetonitrile-0.1% trifluoroacetic acid. The correlation coefficients of similarity were determined from the HPLC fingerprints, and they shared a close similarity. By using an online APCI-MS/MS, twenty phenols were identified. In addition, seven of these phenols including mangiferin, 7-O-methylmangiferin, tectoridin, resveratrol, tectorigenin, irigenin and irisflorentin were quantified by the validated HPLC-DAD method. These phenols are considered to be major constituents in Rhizoma Belamcandae, and are generally regarded as the index for quality assessment of this herb. This developed method by having a combination of chromatographic fingerprint and quantification analysis could be applied to the quality control of Rhizoma Belamcandae.  相似文献   
109.
Recent developments in the field of microbiology and research on the origin of life have suggested a possible significant role for reduced, inorganic forms of phosphorus (P) such as phosphite [HPO32−, P(+III)] and hypophosphite [H2PO2, P(+I)] in the biogeochemical cycling of P. New, robust methods are required for the detection of reduced P compounds in order to confirm the importance of these species in the overall cycling of P in the environment. To this end, we have developed new batch and flow injection (FI) methods for the determination of P(+III) in aqueous solutions. The batch method is based on the reaction of P(+III) with a mixed-iodide solution containing tri-iodide (I3) and penta-iodide (I5). The oxidation of P(+III) consumes free I3 and I5 in solution. The remaining I3 and I5 subunits are then allowed to react with the amylose content in starch to form a blue complex, which has a λmax of 580 nm. The measurement of this blue complex is directly correlated with the concentration of P(+III). The on-line FI method employs the same reaction between P(+III) and mixed-iodide producing phosphate [P(+V)] that is determined spectrophotometrically by the molybdenum blue method employing ascorbic acid at a λmax of 710 nm. The linear range for both the batch and FI determination of P(+III) was 1.0–50 μM with detection limits of 0.70 and 0.36 μM, respectively. Interference studies for the batch method show that arsenite [As(+III)] and sulfite [S(+IV)] can also be determined by this technique; however, these interferences can be circumvented by oxidizing As(+III) and S(+IV) using KMnO4 which is an ineffective oxidant for P(+III). Both methods were applied to P(+III) determinations in ultra-pure water and simulated creek water. Results and analytical figures of merit are reported and future work is considered.  相似文献   
110.
The photodynamic activity of water soluble mixed sulfonated metallophthalocyanines complexes: GePcSmix, SnPcSmix and SiPcSmix on human oesophageal carcinoma (SNO) cells are reported, and compared with the activity of the unmetallated H2PcSmix and of the newly synthesized water soluble adjacently substituted binaphthalo phthalocyanine (complex 3). The alkaline phosphate (ALP) showed damage to the cell membrane in the presence of complex 3 without irradiation. The GePcSmix complex caused a relatively large increase in inflammation and a high intracellular ATP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号