首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   21篇
  国内免费   5篇
化学   677篇
晶体学   3篇
力学   31篇
数学   107篇
物理学   197篇
  2022年   7篇
  2021年   13篇
  2020年   10篇
  2019年   21篇
  2018年   11篇
  2016年   30篇
  2015年   24篇
  2014年   28篇
  2013年   43篇
  2012年   63篇
  2011年   81篇
  2010年   39篇
  2009年   27篇
  2008年   62篇
  2007年   54篇
  2006年   53篇
  2005年   36篇
  2004年   50篇
  2003年   42篇
  2002年   45篇
  2001年   25篇
  2000年   17篇
  1999年   7篇
  1998年   7篇
  1997年   5篇
  1996年   10篇
  1995年   6篇
  1994年   6篇
  1993年   12篇
  1991年   7篇
  1990年   9篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   11篇
  1984年   5篇
  1981年   4篇
  1980年   7篇
  1979年   7篇
  1978年   5篇
  1977年   9篇
  1976年   9篇
  1975年   6篇
  1974年   9篇
  1973年   10篇
  1972年   7篇
  1969年   4篇
  1967年   4篇
  1965年   4篇
排序方式: 共有1015条查询结果,搜索用时 234 毫秒
41.
42.
The structures of the P cluster and cofactor cluster of nitrogenase are well-defined crystallographically. They have been obtained only by biosynthesis; their chemical synthesis remains a challenge. Synthetic routes are sought to the P cluster in the P(N) state in which two cuboidal Fe(3)S(3) units are connected by a mu(6)-S atom and two Fe-(mu(2)-S(Cys))-Fe bridges. A reaction scheme affording a Mo(2)Fe(6)S(9) cluster in molecular form having the topology of the P(N) cluster has been devised. Reaction of the single cubane [(Tp)MoFe(3)S(4)Cl(3)](1)(-) with PEt(3) gives [(Tp)MoFe(3)S(4)(PEt(3))(3)](1+) (2), which upon reduction with BH(4)(-) affords the edge-bridged all-ferrous double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] (4) (Tp = tris(pyrazolylhydroborate(1-)). Treatment of 4 with 3 equiv of HS(-) produces [(Tp)(2)Mo(2)Fe(6)S(9)(SH)(2)](3)(-) (7) as the Et(4)N(+) salt in 86% yield. The structure of 7 is built of two (Tp)MoFe(3)(mu(3)-S)(3) cuboidal fragments bridged by two mu(2)-S atoms and one mu(6)-S atom in an arrangement of idealized C(2) symmetry. The cluster undergoes three one-electron oxidation reactions and is oxidatively cleaved by p-tolylthiol to [(Tp)MoFe(3)S(4)(S-p-tol)(3)](2)(-) and by weak acids to [(Tp)MoFe(3)S(4)(SH)(3)](2-). The cluster core of 7 has the bridging pattern [Mo(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S)](1+) with the probable charge distribution [Mo(3+)(2)Fe(2+)(5)Fe(3+)S(9)](1+). Cluster 7 is a topological analogue of the P(N) cluster but differs in having two heteroatoms and two Fe-(mu(2)-S)-Fe instead of two Fe-(mu(2)-S(Cys))-Fe bridges. A best-fit superposition of the two cluster cores affords a weighted rms deviation in atom positions of 0.38 A. Cluster 7 is the first molecular topological analogue of the P(N) cluster. This structure had been prepared previously only as a fragment of complex high-nuclearity Mo-Fe-S clusters.  相似文献   
43.
The construction of a synthetic analogue of the A-cluster of carbon monoxide dehydrogenase/acetylcoenzyme synthase, the site of acetylcoenzyme A formation, requires as a final step the formation of an unsupported [Fe(4)S(4)]-(mu(2)-SR)-Ni(II) bridge to a preformed cluster. Our previous results (Rao, P. V.; Bhaduri, S.; Jiang, J.; Holm, R. H. Inorg. Chem. 2004, 43, 5833) and the work of others have addressed synthesis of dinuclear complexes relevant to the A-cluster. This investigation concentrates on reactions pertinent to bridge formation by examining systems containing dinuclear and mononuclear Ni(II) complexes and the 3:1 site-differentiated clusters [Fe(4)S(4)(LS(3))L'](2-) (L' = TfO(-) (14), SEt (15)). The system 14/[{Ni(L(O)-S(2)N(2))}M(SCH(2)CH(2)PPh(2))](+) results in cleavage of the dinuclear complex and formation of [{Ni(L(O)-S(2)N(2))}Fe(4)S(4)(LS(3))]- (18), in which the Ni(II) complex binds at the unique cluster site with formation of a Ni(mu(2)-SR)(2)Fe bridge rhomb. Cluster 18 and the related species [{Ni(phma)}Fe(4)S(4)(LS(3))](3)- (19) are obtainable by direct reaction of the corresponding cis-planar Ni(II)-S(2)N(2) complexes with 14. The mononuclear complexes [M(pdmt)(SEt)]- (M = Ni(II), Pd(II)) with 14 in acetonitrile or Me(2)SO solution react by thiolate transfer to give 15 and [M(2)(pdmt)(2)]. However, in dichloromethane the Ni(II) reaction product is interpreted as [{Ni(pdmt)(mu(2)-SEt)}Fe(4)S(4)(LS(3))](2-) (20). Reaction of Et(3)NH(+) and 15 affords the double cubane [{Fe(4)S(4)(LS(3))}(2)(mu(2)-SEt)](3-) (21). Cluster 18 contains two mutually supportive Fe-(mu(2)-SR)-Ni(II) bridges, 19 exhibits one strong and one weaker bridge, 20 has one unsupported bridge (inferred from the (1)H NMR spectrum), and 21 has one unsupported Fe-(mu(2)-SR)-Fe bridge. Bridges in 18, 19, and 21 were established by X-ray structures. This work demonstrates that a bridge of the type found in the enzyme A-clusters is achievable by synthesis and implies that more stable, unsupported single thiolate bridges may require reinforcement by an additional covalent linkage between the Fe(4)S(4) and nickel-containing components. (LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-); L(O)-S(2)N(2) = N,N'-diethyl-3,7-diazanonane-1,9-dithiolate(2-); pdmt = pyridine-2,6-methanedithiolate(2-); phma = N,N'-1,2-phenylenebis(2-acetylthio)acetamidate(4-); TfO = triflate.).  相似文献   
44.
45.
The electronic, vibrational, and excited-state properties of hexanuclear rhenium(III) chalcogenide clusters based on the [Re(6)(mu(3)-Q)(8)](2+) (Q = S, Se) core have been investigated by spectroscopic and theoretical methods. Ultraviolet or visible excitation of [Re(6)Q(8)](2+) clusters produces luminescence with ranges in maxima of 12 500-15 100 cm(-)(1), emission quantum yields of 1-24%, and emission lifetimes of 2.6-22.4 microseconds. Nonradiative decay rate constants and the luminescence maxima follow the trend predicted by the energy gap law (EGL). Examination of 24 clusters in solution and 14 in the solid phase establish that exocluster ligands engender the observed EGL behavior; clusters with oxygen- or nitrogen-based apical ligands achieve maximal quantum yields and the longest lifetimes. The excited-state decay mechanism was investigated by applying nonradiative decay models to temperature-dependent emission experiments. Solid-state Raman spectra were recorded to identify vibrational contributions to excited-state deactivation; spectral assignments were enabled by normal coordinate analysis afforded from Hartree-Fock and DFT calculations. Excited-state decay is interpreted with a model where normal modes largely centered on the [Re(6)Q(8)](2+) core induce nonradiative relaxation. Hartree-Fock and DFT calculations of the electronic structure of the hexarhenium family of compounds support such a model. These experimental and theoretical studies of [Re(6)Q(8)](2+) luminescence provide a framework for elaborating a variety of luminescence-based applications of the largest series of isoelectronic clusters yet discovered.  相似文献   
46.
Oxidation of a β-aziridinyl alcohol with tetrapropylammonium perruthenate yields a pyrrole and two unusual imine derivatives of fumaraldehyde.  相似文献   
47.
2-, 3-, or 4-Picolyllithium was prepared in excess lithium diiso-propylamide and condensed with several hydroxy-benzaldehydes and 4-hydroxy-acetophenone to afford substituted hydroxyphenyl-pyridyl-ethanols and α-hydroxyphenyl-α-methylpyridineethanols. In two instances. 3-picolyllithium condensed with aldehydes to presumably form the hydroxyphenyl-pyridyl-ethanol, which underwent linear dehydration to the substituted pyridyl-ethylenyl-phenol.  相似文献   
48.
49.
The formation of inclusion complexes of hydroxypropylated β-cyclodextrins (CDs) with three bile salts are investigated to shed light on the role played by the hydroxypropyl (HP) substituents. The HP-chains are situated at the rim of the CD and may thus extend the hydrophobic cavity of the CD. Calorimetric titrations in a broad temperature range and molecular dynamics simulations confirm previous speculations that the HP-chains cause an increase in dehydrated nonpolar surface area upon formation of the complexes. This additional burial of nonpolar surface area, 12–16 Å2 per HP-chain according to the MD simulations, results in more negative values of ΔC p °, which are in quantitative agreement with what is expected for hydrophobic dehydration. Although these observations support the picture of an extended hydrophobic cavity, HPβCD complexes were less stable than their unsubstituted counterparts. This indicates that increased hydrophobic contacts are not always accompanied by increased binding strength. The linear dependence of ΔC p °, ΔH° and ΔS° on the number of HP-chains give rise to isoentropic and isoenthalpic temperatures at which ΔH° and ΔS° are independent of the number of HP-chains on the host CD (but depend on the type of bile salt). Interestingly, these convergence temperatures are close to what is observed for unfolding of proteins and may be a common feature of hydrophobic dehydration.  相似文献   
50.
Variational inequality theory facilitates the formulation of equilibrium problems in economic networks. Examples of successful applications include models of supply chains, financial networks, transportation networks, and electricity networks. Previous economic network equilibrium models that were formulated as variational inequalities only included linear constraints; in this case the equivalence between equilibrium problems and variational inequality problems is achieved with a standard procedure because of the linearity of the constraints. However, in reality, often nonlinear constraints can be observed in the context of economic networks. In this paper, we first highlight with an application from the context of reverse logistics why the introduction of nonlinear constraints is beneficial. We then show mathematical conditions, including a constraint qualification and convexity of the feasible set, which allow us to characterize the economic problem by using a variational inequality formulation. Then, we provide numerical examples that highlight the applicability of the model to real-world problems. The numerical examples provide specific insights related to the role of collection targets in achieving sustainability goals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号