首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   20篇
  国内免费   1篇
化学   360篇
晶体学   4篇
力学   3篇
数学   20篇
物理学   66篇
  2023年   13篇
  2022年   11篇
  2021年   9篇
  2020年   12篇
  2019年   8篇
  2018年   9篇
  2016年   13篇
  2015年   13篇
  2014年   14篇
  2013年   18篇
  2012年   14篇
  2011年   32篇
  2010年   19篇
  2009年   21篇
  2008年   21篇
  2007年   15篇
  2006年   17篇
  2005年   17篇
  2004年   12篇
  2003年   5篇
  2002年   11篇
  2001年   7篇
  2000年   10篇
  1998年   6篇
  1996年   5篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1988年   4篇
  1985年   3篇
  1984年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1974年   4篇
  1968年   4篇
  1966年   6篇
  1944年   2篇
  1942年   2篇
  1937年   2篇
  1930年   3篇
  1929年   3篇
  1927年   2篇
  1926年   2篇
  1915年   3篇
  1910年   4篇
  1909年   5篇
  1908年   6篇
  1893年   2篇
  1887年   4篇
排序方式: 共有453条查询结果,搜索用时 46 毫秒
31.
32.
33.
34.
35.
36.
Characterization of an acoustic cavitation bubble structure at 230 kHz   总被引:1,自引:0,他引:1  
A generic bubble structure in a 230 kHz ultrasonic field is observed in a partly developed standing wave field in water. It is characterized by high-speed imaging, sonoluminescence recordings, and surface cleaning tests. The structure has two distinct bubble populations. Bigger bubbles (much larger than linear resonance size) group on rings in planes parallel to the transducer surface, apparently in locations of driving pressure minima. They slowly rise in a jittering, but synchronous way, and they can have smaller satellite bubbles, thus resembling the arrays of bubbles observed by Miller [D. Miller, Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field, J. Acoust. Soc. Am. 62 (1977) 12]. Smaller bubbles (below and near linear resonance size) show a fast "streamer" motion perpendicular to and away from the transducer surface. While the bigger bubbles do not emit light, the smaller bubbles in the streamers show sonoluminescence when they pass the planes of high driving pressure. Both bubble populations exhibit cleaning potential with respect to micro-particles attached to a glass substrate. The respective mechanisms of particle removal, though, might be different.  相似文献   
37.
The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller–Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton’s second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface.  相似文献   
38.
39.
40.
The polarization asymmetries for thee + e ? scattering with polarized incoming and outgoing beams, which are proportional to the amplitudes? 5 describing one helicity flip and? 5 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号