首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   5篇
化学   88篇
力学   1篇
物理学   14篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   11篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
101.
Urine samples obtained from drug abusers were screened for drugs of abuse and their metabolites using DESI-MS and the results obtained were compared to results obtained from GC-MS experiments. The detected analyte classes included amphetamines, opiates, cannabinoids and benzodiazepines. The compounds detected were codeine, morphine, oxymorphone, 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol, Delta(9)-tetrahydrocannabinol, alprazolam, temazepam, oxazepam, N-desmethyldiazepam (nordiazepam) and hydroxytemazepam. Identities of all the analytes were confirmed by tandem mass spectrometry, matching MS/MS spectra with authentic standard compounds. The concentrations of the analytes in the samples were obtained from semi-quantitative GC-MS studies and were in the range of 270-22,000 ng mL(-1). The analytes could be detected by DESI even after a hundred-fold dilution indicating that the sensitivity of DESI was more than adequate for this study. Selectivity in the DESI-MS measurements for different kinds of analytes could be increased further by optimizing the spray solvent composition: the use of an entirely aqueous solvent enhanced the signal of polar analytes, such as the benzodiazepines, whereas the use of a spray solvent with a high organic content increased the signal of less polar analytes, such as codeine and morphine.  相似文献   
102.
A homogeneous non-competitive assay principle for measurement of small analytes based on quenching of fluorescence is described. Fluorescence resonance energy transfer (FRET) occurs between the donor, intrinsically fluorescent europium(III)-chelate conjugated to streptavidin, and the acceptor, quencher dye conjugated to biotin derivative when the biotin-quencher is bound to Eu-streptavidin. Fluorescence can be measured only from those streptavidins that are bound to biotin of the sample, while the fluorescence of the streptavidins that are not occupied by biotin are quenched by quencher-biotin conjugates. The quenching efficiencies of the non-fluorescent quencher dyes were over 95% and one dye molecule was able to quench the fluorescence of more than one europium(III)-chelate. This, however, together with the quadrovalent nature of streptavidin limited the measurable range of the assay to 0.2-2 nmol L−1. In this study we demonstrated that FRET could be used to design a non-competitive homogeneous assay for a small analyte resulting in equal performance with competitive heterogeneous assay.  相似文献   
103.
It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.
Figure
?  相似文献   
[首页] « 上一页 [2] [3] [4] [5] [6] [7] [8] [9] [10] 11
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号