首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26038篇
  免费   1011篇
  国内免费   144篇
化学   18843篇
晶体学   218篇
力学   491篇
数学   3278篇
物理学   4363篇
  2023年   184篇
  2022年   267篇
  2021年   365篇
  2020年   485篇
  2019年   470篇
  2018年   315篇
  2017年   274篇
  2016年   734篇
  2015年   627篇
  2014年   748篇
  2013年   1227篇
  2012年   1624篇
  2011年   1797篇
  2010年   1037篇
  2009年   872篇
  2008年   1498篇
  2007年   1409篇
  2006年   1396篇
  2005年   1300篇
  2004年   1137篇
  2003年   861篇
  2002年   900篇
  2001年   438篇
  2000年   372篇
  1999年   383篇
  1998年   365篇
  1997年   344篇
  1996年   355篇
  1995年   293篇
  1994年   329篇
  1993年   302篇
  1992年   270篇
  1991年   193篇
  1990年   226篇
  1989年   190篇
  1988年   199篇
  1987年   177篇
  1986年   164篇
  1985年   276篇
  1984年   271篇
  1983年   189篇
  1982年   206篇
  1981年   189篇
  1980年   194篇
  1979年   167篇
  1978年   199篇
  1977年   181篇
  1976年   137篇
  1975年   134篇
  1974年   157篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Two novel monofunctionalized fulleropyrrolidine derivatives (Prato adducts) were prepared and characterized by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MALDI experiments conducted in the positive-ion mode on pure and mixed samples of both monofunctionalized fullerene derivatives revealed the efficient formation of bisadducts (in the case of the pure samples) and mixed bisadducts (in the case of a mixed sample). Bisadducts were not observed in the ESI experiments and thus not present in the sample. A mechanism for the MALDI formation of these bisadduct ions is proposed in which an azomethine ylide fragment is formed in situ from the monofunctionalized fulleropyrrolidine species upon laser irradiation. This fragment, which can survive as an intact moiety in the gas phase in the special environment provided by the MALDI experiment, is then able to attach to a fulleropyrrolidine monoadduct which acts as a dipolarophile, thus leading to the formation of a bisadduct fullerene derivative. The unprecedented re-attachment of the azomethine ylide implies that the establishment of the ligand attainment of Prato adducts based on MALDI analysis alone can lead to wrong assignments.
Figure
?  相似文献   
932.
933.
AICAR (5-amino-4-imidazolecarboxyamide ribonucleoside) arguably provides performance-enhancing properties even in the absence of physical exercise and, therefore, the substance is banned in elite sports since 2009. Due to the natural presence of AICAR in human blood and urine, uncovering the misuse by direct qualitative analysis is not possible. Entering the circulation, the riboside is immediately incorporated into red blood cells (RBCs) and transformed into the corresponding ribotide (5′-monophosphate) form. Within the present study, an analytical method was developed to determine AICAR-ribotide concentrations in RBC concentrates by means of liquid chromatography-tandem mass spectrometry. The method was validated enabling quantitative result interpretation considering the parameters specificity, precision (intra- and interday), linearity, recovery, accuracy (LOD/LOQ), stability and ion suppression. By analysing 99 RBC samples of young athletes, normal physiological levels of AICAR-ribotide were determined (10–500 ng/mL), and individual levels were found to be stable for several days. Employing in vitro incubation experiments with AICAR riboside in fresh whole blood samples, the ribotide concentrations were observed to increase significantly within 30 min from baseline to 1–10 μg/mL. These levels are considered conserved for the lifetime of the erythrocyte and, thus, the results of the in vitro model strongly support the hypothesis that measuring abnormally high AICAR-ribotide concentrations in RBC of elite athletes has the potential to uncover the misuse of this substance for a long period of time.  相似文献   
934.
935.
A substantial portion of the atmospheric particle budget is of biological origin (human and animal dander, plant and insect debris, etc.). These bioaerosols can be considered information-rich packets of biochemical data specific to the organism of origin. In this study, bioaerosol samples from various indoor environments were analyzed to create identifiable patterns attributable to a source level of occupation. Air samples were collected from environments representative of human high-traffic- and low-traffic indoor spaces along with direct human skin sampling. In all settings, total suspended particulate matter was collected and the total aerosol protein concentration ranged from 0.03 to 1.2 μg/m3. High performance liquid chromatography was chosen as a standard analysis technique for the examination of aqueous aerosol extracts to distinguish signatures of occupation compared to environmental background. The results of this study suggest that bioaerosol “fingerprinting” is possible with the two test environments being distinguishable at a 97 % confidence interval.
Figure
Generalized schematic of human debris-based occupation detection. The various human occupation-related aerosolized material are collected via the filtration assembly along with other non-related aerosolized material. The collected material was then analyzed for total protein concentration as well as coarsely separated to generated unique pattern profiles. These profiles are information-rich enough to identify human occupation in an indoor space  相似文献   
936.
Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.  相似文献   
937.
Urine samples have been the predominant matrix for doping controls for several decades. However, owing to the complementary information provided by blood (as well as serum or plasma and dried blood spots (DBS)), the benefits of its analysis have resulted in continuously increasing appreciation by anti-doping authorities. On the one hand, blood samples allow for the detection of various different methods of blood doping and the abuse of erythropoiesis-stimulating agents (ESAs) via the Athlete Biological Passport; on the other hand, targeted and non-targeted drug detection by means of chromatographic–mass spectrometric methods represents an important tool to increase doping control frequencies out-of-competition and to determine drug concentrations particularly in in-competition scenarios. Moreover, blood analysis seldom requires in-depth knowledge of drug metabolism, and the intact substance rather than potentially unknown or assumed metabolic products can be targeted. In this review, the recent developments in human sports drug testing concerning mass spectrometry-based techniques for qualitative and quantitative analyses of therapeutics and emerging drug candidates are summarized and reviewed. The analytical methods include both low and high molecular mass compounds (e.g., anabolic agents, stimulants, metabolic modulators, peptide hormones, and small interfering RNA (siRNA)) determined from serum, plasma, and DBS using state-of-the-art instrumentation such as liquid chromatography (LC)–high resolution/high accuracy (tandem) mass spectrometry (LC-HRMS), LC–low resolution tandem mass spectrometry (LC-MS/MS), and gas chromatography–mass spectrometry (GC-MS).  相似文献   
938.
We present for the first time the Raman microspectroscopic identification and characterization of individual airborne volcanic ash (VA) particles. The particles were collected in April/May 2010 during research aircraft flights, which were performed by Deutsches Zentrum für Luft- und Raumfahrt in the airspace near the Eyjafjallajökull volcano eruption and over Europe (between Iceland and Southern Germany). In addition, aerosol particles were sampled by an Electrical Low Pressure Impactor in Munich, Germany. As references for the Raman analysis, we used the spectra of VA collected at the ground near the place of eruption, of mineral basaltic rock, and of different minerals from a database. We found significant differences in the spectra of VA and other aerosol particles (e.g., soot, nitrates, sulfates, and clay minerals), which allowed us to identify VA among other atmospheric particulate matter. Furthermore, while the airborne VA shows a characteristic Raman pattern (with broad band from ca. 200 to ca. 700 cm?1 typical for SiO2 glasses and additional bands of ferric minerals), the differences between the spectra of aged and fresh particles were observed, suggesting differences in their chemical composition and/or structure. We also analyzed similarities between Eyjafjallajökull VA particles collected at different sampling sites and compared the particles with a large variety of glassy and crystalline minerals. This was done by applying cluster analysis, in order to get information on the composition and structure of volcanic ash.
Figure
Images and Raman spectra of airborne volcanic ash  相似文献   
939.
The vitamin C concentrations in three food-matrix Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST) have been determined by liquid chromatography (LC) with absorbance detection. These materials (SRM 1549a Whole Milk Powder, SRM 1849a Infant/Adult Nutritional Formula, and SRM 3233 Fortified Breakfast Cereal) have been characterized to support analytical measurements made by food processors that are required to provide information about their products’ vitamin C content on the labels of products distributed in the United States. The SRMs are primarily intended for use in validating analytical methods for the determination of selected vitamins, elements, fatty acids, and other nutrients in these materials and in similar matrixes. They can also be used for quality assurance in the characterization of test samples or in-house control materials, and for establishing measurement traceability. Within-day precision of the LC method used to measure vitamin C in the food-matrix SRMs characterized in this study ranged from 2.7 % to 6.5 %.  相似文献   
940.
A fast and robust high-throughput ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC–TOF MS) profiling method was developed and successfully applied to discriminate a total of 78 Bacillus cereus strains into no/low, medium and high producers of the emetic toxin cereulide. The data obtained by UPLC–TOF MS profiling were confirmed by absolute quantitation of cereulide in selected samples by means of high-performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS) and stable isotope dilution assay (SIDA). Interestingly, the B. cereus strains isolated from four vomit samples and five faeces samples from patients showing symptoms of intoxication were among the group of medium or high producers. Comparison of HEp-2 bioassay data with those determined by means of mass spectrometry showed differences, most likely because the HEp-2 bioassay is based on the toxic action of cereulide towards mitochondria of eukaryotic cells rather than on a direct measurement of the toxin. In conclusion, the UPLC–electrospray ionization (ESI)–TOF MS and the HPLC–ESI–MS/MS–SIDA analyses seem to be promising tools for the robust high-throughput analysis of cereulide in B. cereus cultures, foods and other biological samples.
Figure
Score plot (comp[1] vs. comp[2]) of UPLC‐TOF MS full scan analysis (50–1,300 Da) of 78 B. cereus strains with color‐coded signal intensity of the accurate mass of pseudo molecular ion of cereulide (m/z 1175.6608, [M+Na]+), from group 1 with the lowest up to group 5 with the highest signal intensity  相似文献   
[首页] « 上一页 [89] [90] [91] [92] [93] 94 [95] [96] [97] [98] [99] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号